

Problems

Design of PZT and CMUT transducers

Design of PZT thickness mode transducers

We investigate the design of PZT transducers. The transducer has 128 elements, and it has a pitch of $\lambda/2$. The dicing saw has a blade width of 20 μ m.

Find the:

- thickness of the PZT
- pitch
- element width
- fill factor

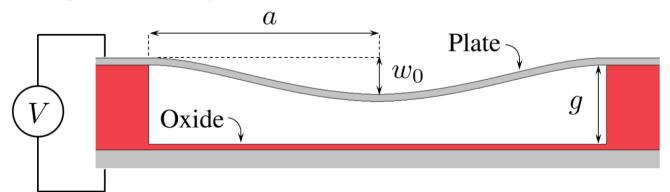
for the following center frequencies:

- 3 MHz
- 8 MHz
- 15 MHz

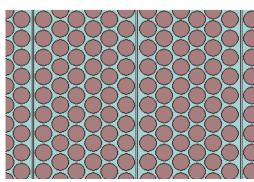
Design of CMUTs

We now investigate the design of CMUTs. The transducer has 128 elements, and it has a pitch of $\lambda/2$. The transducers operates at a DC voltage of 200 V.

We will do our calculations for the following center frequencies:


- 3 MHz
- 8 MHz
- 15 MHz

Follow the CMUT design guidelines (see next page) and calculate the parameters mentioned in the guidelines.


DTU

Basic CMUT design methodology

- 1) Calculate pitch (λ or $\lambda/2$ or ...) from wavelength in the media
- 2) Calculate element width (kerf almost zero or even negative)
- 3) Choose 2D cell layout (cell pitch, circles, squares, hexagonal ...)
- 4) Fit circles into the element and determine radius, a
- 5) Find the plate thickness, *h*, to match immersion frequency
- 6) Select pull-in voltage $\approx 1.25 \times V_{DC}$
- 7) Adjust gap, g, to reach pull-in voltage
- 8) Check performance (bandwidth, pressure, PE sensitivity)
- 9) Check for substrate ringing and array effects ("Bragg" frequency)
- 10) If (performance < specs) goto 3
- 11) Check design with a full Finite Element model

Width \approx Pitch = $\lambda/2$

