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Agenda
• The probe

• The PZT transducer

• The CMUT transducer
– Introduction
– Design
– Fabrication
– Use

• Conclusions

• Problem solving: Design your transducer!
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How does the probe work?

2D CMUT probe

1D PZT probe
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Transduction

Object
Transducer

Transmit pulse

Receive echo

Media

movement

Transmit and receive with the same transducer
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Transduction

Electrical
signal

Mechanical
displacement

Presure
in media

Transmit Pulse

Pressure
in media

Mechanical
displacement

Electrical
signal

Receive Echo
How can we create mechanical movement?
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Transducer principles: PZT & CMUT
How can we create mechanical movement?

Same transducer for send & receive!

Electrode

Electrode

Piezo electric

material

Piezo electric

Frequency given 
by thickness, l, 
(and boundary 
conditions)

l

CMUT: Capacitive

Micromachined Ultrasonic Transducers

Frequency given 
by thickness and 
radius
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CMUT’s: Pros and cons
Piezoelectric transducers CMUTs

• Conventional technology – well 
known

• Elements defined mechanically
– Limited design flexibility 
– Size limitation 20 µm

• High mechanical impedance
– Zmedia. < Zmech.

– Need impedance matching layers

• Narrow bandwidth, <100%
• High pressure
• Difficult direct integration with CMOS
• Contains lead

• New technology – not as mature
• Elements defined by photolithography

– Large design flexibility (different elements 
in TX & RX, lateral flexibility)

– Size limitation 1 µm

• Very low plate mechanical impedance
– Zmedia. » Zmech.

– No need for impedance matching

• Wide bandwidth, >100% è Improved 
axial resolution

• Pressure-bandwidth trade off
• Integration capability with silicon CMOS
• Lead free
• Potential for low cost (& high yield)
• Do not heat up -> coded excitation
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CMUT’s have been promising for 30 years

Still - few products on the marked

The PZT transducer rules the game

(today)

might change

(tomorrow?)
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What's inside a probe?

Example: 2D CMUT probe
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Assembly principle

Cable Electronics 
PCB Flex PCB Transducer

Probe handle

PCB = Printed Circuit Board

Flex: Flexible
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Example: 2D CMUT Probe assembly

CMUT transducer array

Flexible PCB

Integrated electronics for CMUT’s
Cable to scanner

3-D printed probe handle
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Probe Assembly – Flexible PCB

Transducer (62+62 row-column)
Interconnect

Flexible PCB

Wire bonds
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Interconnect technology

Flip-chip:

Transducer mounted to 
PCB using solder bumps

Wire bonding:

Transducer mounted to 
PCB using thin (ø20 µm) 
wires
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Probe Assembly – Nose piece

• Transducer array mounted in nose piece with grounded shielding layer
• Polymer coating for physical and electrical insulation
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Probe Assembly –
Attach to electronics and cable
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Probe Assembly – PCB shielding
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Probe Assembly – Finished Probe
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Array based transducers

2-D transducer

Pitch Kerf

1-D transducer

Width

Width = pitch – kerf

Fill factor = width/pitch
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PZT transducer dimensions

f=5 MHz

p=150 µm

l=433 µm

f=15 MHz

p=50 µm

l=144 µm

f=50 MHz

p=15 µm

l=43 µm

Small pitch & thickness is needed

Challenging fabrication!

For arrays: Pitch must be λ/2 to avoid grating lobes!
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Fabrication technologies

How to pattern lateral structures in the micrometer range?

• Fine mechanics > 25 µm

• Micro mechanics > 1 µm

• Nano technology < 1 µm

Saw blade

Mechanical shaping: 

Grinding, dicing & polishing

Silicon based

micro fabrication:

Lithography

Deposition

Etching
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The PZT transducer
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Conventional 1D PZT transducer array

a) Backing layer (reduce ringing)
b) Bottom electrode
c) Each element is a piezoelectric block
d) Top electrode
e) Matching layers (high to low acoustic impedance)

Pitch Kerf

1-D transducer

Width

Width = pitch – kerf

Fill factor = width/pitch

Thickness mode

Frequency: 

cpiezo is sound velocity in 
PZT (4330 m/s)

l is piezo element 
thickness

f =
cpiezo
2l l
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Lens
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A PZT transducer: Cross-section

Lens material & isolation

Backing material

Electrode

Electrode

Matching

layers

End of

array

PZT

Element

Diced
l
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Structure of PZT

Lead atoms at the corners

Oxygen atoms at the faces

Ti,Zr closer to center
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Inside PZT …

Ti

SiO2

Pt

PZT
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Working principle
The PZT transducer is based on the piezoelectric transducer principle:
• Direct effect: Stress => Charge build up
• Converse effect: Applied charge (voltage) => Strain

Source: http://electronicdesign.com/
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Working principle in 1D: Converse effect

Piezo electric

material

Mechanical

strain

Electric

Field (V/m)

Piezo electric coefficient:

Unit: C/N=m/V

Used in transmit
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Working principle in 1D: Direct effect

Piezo electric

material

stress=force/area

T=F/A

Mechanical

stress

Piezo electric coefficient:

Unit: C/N=m/V

Electrical

polarization

Used in receive
Permittivity

Electric field
Electric 
displacement
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Receive – in 1D

T: Mechanical stress

d: Piezo electric coefficient

Electrical polarization
T=force/area=F/A=pressure=p

Permittivity Electric field

Electric displacement

E= Electric 
field=Voltage/distance=V/lReceive voltage
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Working principle in 3D: Coupled equations

direct
piezoelectric 

effect

Electrical
displacement

Permittivity

Direct effect (receive):

Strain Compliance Stress

Electric field

converse 
piezoelectric 

effect

Converse effect (transmit):

Stress
Electric field
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Properties of PZT (5-H)
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20 MHz:
lmedia≈ 75µm
Pitch ≈ 38 µm
Thickness ≈ 108µm
Width ≈ 7µm

Characteristics of piezoelectric transducer
• Thickness mode

– Frequency 
– cpiezo is sound velocity
in PZT (4330 m/s)
– l is element thickness

• Element pitch = 0.5 lmedia

• Width = pitch-kerf

f =
cpiezo
2l

3 MHz: 
lmedia≈ 500 µm
Pitch ≈ 250 µm
Thickness ≈ 722 µm
Width ≈ 220 µm

Pitch Kerf ≈ 30 µmWidth
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Advanced PZT transducer design

Some tools:

• PZCAD

• COMSOL

• KLM modeling

• OnScale

On-line KLM tool:

https://www.biosono.com/

(https://biosono.com/?page_id=91)

Onscale has a 10 core
hour/month free 
account

https://onscale.com



38

BREAK
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THE CMUT TRANSDUCER

Capacitive Micro-machined Ultrasonic Transducers
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CMUT: History

1994: 1st CMUTs 
made at Stanford

1994-now: Different CMUT versions
2004-now: GE, Stanford, Vermon, DTU, 
Kolo, Butterfly (2018)

2000: First CMUT 
ultrasound images

2012: Roma Tre

1D probe

1D probe

2D probe
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Butterfly – 2018 – portable ultrasound

CMUT based probe
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The CMUT building block: Capacitor
The CMUT is a capacitive device:

Transmit:

Use DC voltage to increase coupling coefficient

Actuation is performed by varying the voltage

Receive: Change in capacitance is detected
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Operating the CMUT 

Transmitter Receiver
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CMUT Design - Array

1-D array

Cells

Element

The cell is the building block

Common ground

Width 
≈ Pitch

Cells
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UNDERSTANDING 
CAPACITIVE 
TRANSDUCERS

What is pull-in and spring softening?



Basic principle: Sensing & Actuation

S: Plate area
d: Plate distance

Attractive
force between the plates
(actuation):

Capacitance (sensing):



Model for capacitive device



Force & potential energy

• Which forces act on the movable plate?
• How does force/energy depend on z and V?
• Calculate the force as function of z and V

Potential energy: Force:



Forces

Mechanical (spring)

Electrostatic



Force balance F = 0



Stable equilibrium

• Condition 1: Total force = 0
• Condition 2: Small movement lowers force

(i.e. minimum in potential energy)

Must be negative!



Stable equilibrium

1 - Stable position: 2 – Pull-in voltage:



Pull-in voltage
At pull in the electrostatic & the spring force are equal:

Pull in voltage:

Combining:

What is z at pull in?

1

2



Pull-in distance & voltage

Thus,

Depends on          ! 

Pull-in distance:

Pull-in voltage:



0.0 0.2 0.4 0.6 0.8 1.0
zêg0.0

0.2

0.4

0.6

0.8

1.0
HVêVpiL2

Stable Position

UnstableStable



Details at pull-in

Moving plate

Fixed plate

g

t ox

At pull-in the two plates touch each other!

SiO2



Pull-out voltage

At pull-in the moving plate touches fixed plate
Plate distance is the thickness of the insulating layer

Force balance leads to pull-out condition:

Force between plates:



Pull-out – force balance



Hysteresis



Measured hysteresis

Pull-out Pull-in



The CMUT is not a parallel plate 
capacitor – what do we do?



CMUT capacitance of circular device

Deflection comes 
from structural 
mechanics



CMUT – capacitance of circular device



Comparison: Theory - Experiment



Stable position

0.0 0.2 0.4 0.6 0.8 1.0
zêg0.0

0.2

0.4

0.6

0.8

1.0
HVêVpiL2

Circular CMUT

0.461/3

Parallel plate



Pull-in parameters

For the circular plate:

Pull-in distance:

Pull-in voltage:
g = gap

h = plate thickness

a = radius

Y = Young’s modulus, ∼148 GPa

𝜈 = Poisson’s ratio, ∼ 0.17

𝜀 = Vacuum permittivity



Spring softning
Spring constant decreases with voltage!



Spring softning: Measured

Norm. voltage [V/Vpi]
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Mini conclusion

• Capacitive sensors have high sensitivity!
• Can be used for actuation & sensing
• Pull–in <> pull–out
• Hysteresis
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CMUT DESIGN

From specifications to design parameters
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Probe requirements – one example

Medical imaging:
• 128-element linear array
• 5 MHz center frequency
• λ-pitch

Assembly and electronics:
• Compatible with commercial BK ultrasound scanner
• Up to 190 V DC bias is available
• Up to +/- 75 V AC transmit voltage

All CMUT designs begin with a set of specifications
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CMUT Design - Array

1-D array

Cells

Element

The cell is the building block

Common ground

Width 
≈ Pitch

Cells
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CMUT design questions
The CMUT designer must choose dimensions and fabrication technology.

One must find:

• How to layout the cells

• Plate radius, a

• Plate thickness, h

• Vacuum gap, g

Given:

• Array type (linear, row-column, …)

• Center frequency in water, fwater

• Pitch (λ or λ/2 or …) , p

• DC and AC voltages
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Basic CMUT cell design equations

Circular plate

vacuum resonant frequency:

Circular plate

pull-in voltage:

g = gap

h = plate thickness

a = radius

Y = Young’s modulus, ∼148 GPa

𝜈 = Poisson’s ratio, ∼ 0.17

𝜌 = Plate density, ∼ 2.33 g/cm3

𝜀 = Vacuum permittivity

𝛤 = 0.6689

Circular plate

resonant frequency in water:

(Lamb 1920)

������
��

=
�

�
�

������
������

� + �

Ratio is around ½,
i.e., the resonant
frequency is water is
half that in vacuum
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Center frequency in immersion (OnScale) 
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should I use?

?

?

?

?

Depends on 
required 

bandwidth, 
pressure, 
sensitivity
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Basic CMUT design methodology
1) Calculate pitch (λ or λ/2 or …) from wavelength in the media

2) Calculate element width (kerf almost zero or even negative)

3) Choose 2D cell layout (cell pitch, circles, squares, hexagonal …)

4) Fit circles into the element and determine radius, a

5) Find the plate thickness, h, to match immersion frequency

6) Select pull-in voltage ≈ 1.25×VDC

7) Adjust gap, g, to reach pull-in voltage

8) Check performance (bandwidth, pressure, PE sensitivity)

9) Check for substrate ringing and array effects (“Bragg” frequency)

10) If (performance < specs) goto 3

11) Check design with a full Finite Element model Width ≈ Pitch = λ/2
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CMUT Design Example - Dimensions

• Available plate thickness, h = 2.2 +/- 0.5 µm
• Center frequency = 5 MHz

• Desired pull-in voltage = 240 V
Vacuum gap height, g = 260 nm

Insulating oxide thickness, gins = 380 nm

Nitride layer, tni = 50 nm

Circular plate size, a = 24.3 µm

Silicon

SiO2

Si3N4

a

h

gins

g
tni
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Complication:

Cells interact!

(Array effects)
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Advanced modelling needed

FEM simulations – PZFLEX/OnScale/COMSOL models
Physics: Electrostatic, mechanical and acoustical

Solvers: Frequency domain and transient
Aim: Frequency spectrum and transient response

Medium

PML layer

Element with 

4 cells in width

Lumped element modeling
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Simulation & experiment fit well

à Field II
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Optimization of a CMUT device

• Model
– Infinite array
– Circular cells placed in a hexagonal grid
– Simulating one unit cell

• Results
– Impulse response

• Transmit
• Receive

– Sensitivity
– Plate velocity at center
– Pressure
– Acoustic impedance

Cell pitch
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Cell pitch

Three cell and array effects

3) Substrate ringing

fs= (Si Speed of sound) / (2 tsub)

00

01

0210

1) Plate vibration modes

2) Mutual couplings: “Bragg frequency”, 
fb= (Speed of sound) / (cell pitch) 

Zero pressure

tsubSilicon

substrate
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Mode shapes
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*Meynier, Cyril, Franck Teston, and Dominique Certon. "A multiscale model for array of capacitive micromachined ultrasonic transducers.” 
The Journal of the Acoustical Society of America 128.5 (2010): 2549-2561.

Frequency dip = (Speed of sound) / (cell pitch) =~18 MHz 

Radius: 40 µm
Plate thickness: 5 µm
Pull-in:200V
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Parametric Sweep

Parameters

• Plate thickness between 0.5µm and 15 µm

• Radius between 10 µm and 80 µm

• Fixed pull-in voltage at 200 V

• Fixed distance between cells, 5 µm

• Constant electrode area, 1 cm2

• Both transmit and receive

Total of 567 simulations

Simulation time

• Personal computer (8 cores, 64GB ram) : >1 week

• In the cloud: <2 hours (2 cores per simulation, parallel, ~600 core hours)
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Parametric Sweep Results

• Center frequency

• Pressure

• Bandwidth
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Design of a 5 MHz transducer
(like Tabla V & VI)

• Optimal parameters

• Trade-offs

• Evaluate
– Sensitivity
– Bandwidth
– Frequency dip

• In
– Transmit mode
– Receive mode
– Pulse-echo
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Optimize a 5 MHz transducer: Dimensions
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Transmit Mode
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Vpi = 200

VDC/Vpi = 0.9

fc = 5MHz

Tabla VI
Tabla V

Tabla V

Tabla VI

Pressure or Bandwidth!
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Receive Mode
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Pulse-echo
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To summarize:

Pressure, sensitivity, and PE sensitivity can be improved at the expense of bandwidth

Tabla VI

Tabla V

Tabla V
Tabla VI



102

Tabla VI

CMUT dimensions:

Cell type: Circular, Ø 120

Cell separation: 7 µm

Plate thickness: 9.3 µm

Substrate thickness: 500 µm

Characterisistics:

Substrate ringing: 8.1 MHz

Bragg frequency: 11.7 MHz

Substrate ringing Substrate ringing
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Sub - conclusion

• High performance cloud computing and OnScale enables huge parametric 

FEA studies

• CMUT can be optimized with respect to output pressure and receive 

sensitivity, but at the expense of bandwidth.

• Mutual acoustic impedance effects are captured explaining dips in 

frequency spectra

– can limit bandwidth and performance if not designed properly
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CMUT FABRICATION
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CMUT fabrication – baseline process

Wafers

Furnace, idle 
temp. 800°C
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CMUT fabrication

Vacuum cavity
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CMUT fabrication
EVG 520HE at 
DTU: NIL & 
Fusion bonding

RCA cleaning 
before bonding
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CMUT fabrication
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CMUT fabrication
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CMUT fabrication
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CMUT fabrication



Add Presentation Title 
in Footer via ”Insert”; 
”Header & Footer”

CMUT fabrication
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Finished array

Element

Bonding pad               
(1 µm thick)

Substrate contact
Bonding pad
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More than 90% yield

1D arrays: 13 in total on a wafer
Test structures

~42 mm
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Characterization

Impedance measurements in air to quantify the electromechanical coupling
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Probe assembly
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Fully assembled probe
– Pulse-echo

Average wave form and envelope

Plane wave emission:

Distance: 10 mm

RMS pressure: 630 kPa

(unfocused)

VDC=150 V

Vpull-in= 185 V
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Fully assembled probe
- Pulse-echo sensitivity

Average spectrum

Bandwidth: 122 %

Center frequency: 3.42 MHz
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1-D TABLA probe

Conventional PZT probe CMUT probe: Higher axial resolution

• MEMS è small mass

• High bandwidth

• High axial resolution

• Improved image quality
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Imaging of the carotid artery
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Conclusion

• PZT technology dominates the transducer market

• CMUT is an emerging technology

• Compatibility with silicon fabrication

• Excellent dimensional control (≈1 µm)

• No need for impedance matching layers

• Large bandwidth (>100%)

• Low price – if many are made

• Lead free

• All major players investigate CMUT technology

CMUT’s could change the game – when full potential is realized
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Thank you for your attention!

Time for problem solving



Problems
Design of PZT and CMUT transducers
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Design of PZT thickness mode transducers
We investigate the design of PZT transducers. The transducer has 128 
elements, and it has a pitch of 𝜆/2. The dicing saw has a blade width of 20 
𝜇m.

Find the:
• thickness of the PZT
• pitch
• element width
• fill factor

for the following center frequencies:
• 3 MHz
• 8 MHz
• 15 MHz
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Design of CMUTs
We now investigate the design of CMUTs. The transducer has 128 
elements, and it has a pitch of 𝜆/2. The transducers operates at a DC
voltage of 200 V.

We will do our calculations for the following center frequencies:
• 3 MHz
• 8 MHz
• 15 MHz

Follow the CMUT design guidelines (see next page) and calculate the 
parameters mentioned in the guidelines.
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Basic CMUT design methodology
1) Calculate pitch (λ or λ/2 or …) from wavelength in the media

2) Calculate element width (kerf almost zero or even negative)

3) Choose 2D cell layout (cell pitch, circles, squares, hexagonal …)

4) Fit circles into the element and determine radius, a

5) Find the plate thickness, h, to match immersion frequency

6) Select pull-in voltage ≈ 1.25×VDC

7) Adjust gap, g, to reach pull-in voltage

8) Check performance (bandwidth, pressure, PE sensitivity)

9) Check for substrate ringing and array effects (“Bragg” frequency)

10) If (performance < specs) goto 3

11) Check design with a full Finite Element model Width ≈ Pitch = λ/2


