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Purpose of lecture
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Understanding medical ultrasound acoustic sim-
ulation and the signal processing in medical ul-
trasound systems. Give a hands-on knowledge of
Field II by making an exercise using Matlab and
the program.

The participant should have a portable PC,
which has Matlab on it, with the latest version
of Field II.



Purpose of Field II simulation
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Simulation of medical ultrasound imaging to
gain a detailed understanding of the acoustics
and its influence on the signal processing, with
the purpose of aiding the development of new ad-
vanced ultrasound systems and to reveal their re-
alistic performance.

Lecture Outline
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1. Simulation model: spatial impulse responses:

• Linear description of acoustic fields using spatial impulse responses
• Calculation of spatial impulse responses
• Examples, problems and solutions: Time integration for improved accuracy
• The Field II program

2. Simple uses of Field II for arrays

• Calculation of emitted fields, CW, PSFs,
• Calculation of intensities
• How to calibrate the program
• Attenuating medium



Simulation of Ultrasound Systems using Field II
Part 1: Spatial impulse responses
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Linear Electrical System

Jørgen Arendt Jensen 6

Fully characterized by it’s impulse response



Linear Acoustic System
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Impulse response at a point in space.

Huygens’ Principle
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Arrival times: t = |~r|/c
Moving the point results in a new impulse response:
Spatial Impulse Responses - h(~r1, t)



Rayleigh’s Integral
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Summation of spherical waves from each point on the aperture surface:

p(~r1, t) =
ρ0

2π

∫

S

∂vn(~r2,t−
|~r1−~r2|

c )

∂t

|~r1−~r2 |
d2~r2

|~r1−~r2 | - Distance to field point
vn(~r2, t) - Normal velocity of transducer surface

ρ0 - Density of medium

Derivation
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Exchanging the integration and the partial derivative gives

p(~r1, t) =
ρ0

2π

∂
∫

S

vn(~r2, t−
|~r1−~r2 |

c
)

|~r1−~r2 |
dS

∂t
.

Introduce the velocity potential ψ:

~u(~r, t) =−∇ψ(~r, t)

p(~r, t) = ρ0
∂ψ(~r, t)

∂t
.

Only a scalar quantity need be calculated:

ψ(~r1, t) =
∫

S

vn(~r2, t− |~r1−~r2|
c )

2π |~r1−~r2 |
dS



Derivation, continued .....
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ψ(~r1, t) =
∫

S

vn(~r2, t− |~r1−~r2|
c )

2π |~r1−~r2 |
dS

Excitation pulse can be separated from transducer geometry by introducing
a time convolution with a δ-function:

ψ(~r1, t) =
∫

S

∫

T

vn(~r2, t2)δ(t− t2− |~r1−~r2|
c )

2π |~r1−~r2 |
dt2dS,

Assume surface velocity is uniform over aperture making it independent of
~r2:

ψ(~r1, t) = vn(t)∗
∫

S

δ(t− |~r1−~r2|
c )

2π |~r1−~r2 |
dS,

∗ denotes convolution.

Spatial impulse response
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Summation of all spherical waves from the aperture:

h(~r1, t) =
∫

S

δ(t− |~r1−~r2|
c )

2π |~r1−~r2 |
dS

|~r1−~r2 | - Distance to field point
c - Speed of sound
S - Transducer surface



Ultrasound fields
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Emitted field:
p(~r1, t) = ρ0

∂v(t)
∂t
∗h(~r1, t)

Pulse echo field:

vr(~r1, t) = vpe(t)∗ fm(~r1)∗hpe(~r1, t)

fm(~r1) =
∆ρ(~r1)

ρ0
− 2∆c(~r1)

c

Continuous wave fields:

F {p(~r1, t)} , F {vr(~r1, t)}

All fields can be derived from the spatial impulse response.

Huygens’ principle
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Arrival times: t = |~r|/c
Moving the point results in a new impulse response:
Spatial Impulse Responses - h(~r1, t)



Acoustic Reciprocity
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Kinsler & Frey:
”If in an unchanging environment the locations of a small source and a
small receiver are interchanged, the received signal will remain the same.”

In other words:
The field can be derived by emitting a spherical wave from the field point
and finding the arc that intersects the aperture.

Situation
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Emission of spherical wave from the field point and its intersection of the
aperture.



Projection onto Aperture Plane
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Aperture

Field point

x

y

r1

r2

Intersection of spherical waves from the field point by the aperture, when
the field point is projected onto the plane of the aperture.

Calculation of Spatial Impulse Responses
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Spatial impulse response:

h(~r1, t) =
∫

S

δ(t− |~r1−~r2|
c )

2π|~r1−~r2|
dS,

~r1 position of field point,~r2 position on aperture.

Polar coordinate system gives
∫ ∫

s
f (x,y)dxdy =

∫ r

0

∫ 2π

0
r f (r,θ)dθdr.

Projected circles have radius: r =
√
(ct)2− z2

Distance to field point: R =
√

z2+ r2,
z - field point’s height above x− y plane.



Example
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Field point

x

y

Spherical
wave

θb

θc

r

First response arrives at t = t1 = z/c, hereafter the fixed part of the circle
between the angles θb and θc contributes to the response.

Derivation
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hT(~r1, t) =
∫ r

0

∫ θc

θb

r
δ(t− |R|c )

2π|R| dθdr =
θc−θb

2π

∫ r

0
r
δ(t− |R|c )
|R| dr

Substitution: R =
√

z2+ r2,dR/dr = 1
2(z

2 + r2)−1/22r = 1
2R2r leading to

2RdR = 2rdr. This results in

hT(~r1, t) =
θc−θb

2π

∫ √z2+r2

z
R

δ(t− |R|c )
|R| dR =

θc−θb

2π

∫ √z2+r2

z
δ(t− |R|

c
)dR

Time substitution R/c = t ′ results in

hT(~r1, t) =
θc−θb

2π
c
∫ tx

t1
δ(t− t ′)dt ′ =

(θc−θb)

2π
c for t1 ≤ t ≤ tx

Time tx equals the corresponding time for edge point closest to origo.



Examples of Spatial Impulse Responses
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x

y

h

t

Aperture

Spherical waves

Emitted pressure field:

p(~r, t) = ρ0
∂vn(t)

∂t
∗h(~r, t)

Computer simulation: sir demo.m

Triangular aperture
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Ultrasound fields
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Emitted field:
p(~r1, t) = ρ0

∂v(t)
∂t
∗h(~r1, t)

Pulse echo field:

vr(~r1, t) = vpe(t)∗ fm(~r1)∗hpe(~r1, t)

fm(~r1) =
∆ρ(~r1)

ρ0
− 2∆c(~r1)

c

Continuous wave fields:

F {p(~r1, t)} , F {vr(~r1, t)}

All fields can be derived from the spatial impulse response.

Problems with Spatial Impulse Responses
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1. Not easy to calculate analytically for complex geometries and apodiza-
tion over the aperture

2. Numerical difficulties

• Edges (difficult in sampled system)
• Very short responses (loss of energy)

0 10 20 30 40 50 60 70 80
0

200

400

600

800

Relative time [ns]

S
p

a
ti
a

l 
im

p
u

ls
e

 r
e

s
p

o
n

s
e

 [
m

/s
]

Response from small array element



Problems with calculation of Spatial Impulse Responses
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Response for direct calculation with fs = 100 MHz
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Correct response

Pulse-echo field from concave transducer at focal point

Solutions
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1. Linearity→ superposition can be used
→ division into elementary elements (rectangles, triangles or bounding
lines)

2. Limited bandwidth of pulse → energy important, not actual shape of
response→ time integration of spatial impulse response



Far-Field Response from Rectangular Element
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Field point

Aperture

Far-Field Response from Rectangular Element
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t
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t
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t

h

m/s

Energy conservation: Integration of response over time.

Size of element (far-field response):

z� w2

4λ
w�

√
4zλ

z - distance to field point, w - largest dimension of rectangle,
λ - wavelength



Modeling
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Possibilities:
1. All transducer geometries
2. Phasing
3. Apodization (v(t) varies over the surface)
4. All kinds of excitations

Basic geometries
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Method:
• Rectangles: Direct integration of far field response
• Triangles: Romberg integration
• Bounding lines: Romberg integration



Point spread functions (rectangles)
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Response for fs = 2 GHz

Point spread function for 64 element linear array for fs = 100 MHz (top)
and fs = 2 GHz (bottom). (6 dB between the contour lines)

Field II
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• Transducer modeled by dividing it into rectangles, triangles or bounding lines.

• C program interfaced to Matlab.

• Matlab used as front-end.

• Can handle any transducer geometry.

• Physical understanding of transducer.

• Pre-defined types: piston and concave single element, linear array, phased array, convex array, 2D matrix

• Any focusing, apodization, and excitation pulse.

• Multiple focusing and apodization.

• Dynamic focusing.

• Can calculate all types of fields (emitted, received, pulsed, CW)

• Can generate artificial ultrasound images (phased and linear array images with multiple receive and transmit foci).

• Data storage not necessary.

• Post-processing in Matlab

• Versions for: Windows, Linux, Apple OS-X

• Free program at: http://field-ii.dk/



Field II Program Organization

Jørgen Arendt Jensen 33

M-files

Matlab

Matlab

interface

Transducers

Calculations

Signal
processing

Makes it possible to use Matlab for signal processing and imaging

Using the Field II program 1 (field demo.m)
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% Start the system and initialize the path

path(path,’/home/jaj/programs/field_II/M_files’)
path(path,’/home/jaj/programs/field_II/m_utilities’);

% Initialize the field system

field_init

% Set basic parameters

f0=1e6; % Transducer center frequency [Hz]
fs=100e6; % Sampling frequency [Hz]
c=1540; % Speed of sound [m/s]
density=1e6; % Density [g/mˆ3]
lambda=c/f0; % Wavelength [m]
radius=10/1000; % Radius of piston transducer [m]



Using the Field II program 2 -Aperture definition
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% Generate an aperture

dist_field=1/1000;
ele_size=sqrt(dist_field*4*lambda);
aperture = xdc_piston (radius, ele_size);
xdc_show(aperture)
show_xdc(aperture)
ele_size=0.1/1000;
aperture = xdc_piston (radius, ele_size);

% Set the impulse response and excitation of the aperture

impulse_response=sin(2*pi*f0*(0:1/fs:2/f0));
impulse_response=impulse_response.*hanning(max(size(impulse_response)))’;
xdc_impulse (aperture, impulse_response);

excitation=sin(2*pi*f0*(0:1/fs:2/f0));
excitation=excitation.*hanning(max(size(excitation)))’;
xdc_excitation (aperture, excitation);

Using the Field II program 3 - Field calculation
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% Make a calculation of the spatial impulse response

[h,t] = calc_h (aperture, [0 0 10]/1000);
plot((0:length(h)-1)/fs+t, h); xlabel(’Time [s]’); ylabel(’h [m/s]’)
[h,t] = calc_h (aperture, [2 0 10]/1000);
plot((0:length(h)-1)/fs+t, h); xlabel(’Time [s]’); ylabel(’h [m/s]’)
[h,t] = calc_h (aperture, [5 0 10]/1000);
plot((0:length(h)-1)/fs+t, h); xlabel(’Time [s]’); ylabel(’h [m/s]’)
[h,t] = calc_h (aperture, [8 0 10]/1000);
plot((0:length(h)-1)/fs+t, h); xlabel(’Time [s]’); ylabel(’h [m/s]’)
[h,t] = calc_h (aperture, [20 0 10]/1000);
plot((0:length(h)-1)/fs+t, h); xlabel(’Time [s]’); ylabel(’h [m/s]’)

% Make calculations for a number of points

points=[0:10; zeros(1,11); 10*ones(1,11)]’/1000
[h,t] = calc_h (aperture, points);
plot((0:length(h)-1)/fs+t, h) xlabel(’Time [s]’); ylabel(’h [m/s]’)



Using the Field II program 4 - Emitted field
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% Make a calculation of the emitted pressure

[p,t] = calc_hp (aperture, [0 0 50]/1000);
plot((0:length(p)-1)/fs+t, p*density); xlabel(’Time [s]’); ylabel(’p [Pa]’)
points=[0:10; zeros(1,11); 50*ones(1,11)]’/1000
[p,t] = calc_hp (aperture, points);
plot((0:length(p)-1)/fs+t, p*density); xlabel(’Time [s]’); ylabel(’p [Pa]’)

% Make a calculation of the pulse-echo voltage

[v,t] = calc_hhp (aperture, aperture, [0 0 50]/1000);
plot((0:length(v)-1)/fs+t, v)

Using the Field II program 5 - Setting parameters
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% Setting parameters

fs=1000e6; % Sampling frequency [Hz]
set_field (’fs’,fs);

% Set the impulse response and excitation of the aperture again

impulse_response=sin(2*pi*f0*(0:1/fs:2/f0));
impulse_response=impulse_response.*hanning(max(size(impulse_response)))’;
xdc_impulse (aperture, impulse_response);

excitation=sin(2*pi*f0*(0:1/fs:2/f0));
excitation=excitation.*hanning(max(size(excitation)))’;
xdc_excitation (aperture, excitation);

[h,t] = calc_h (aperture, [8 0 10]/1000);
plot((0:length(h)-1)/fs+t, h)

% Release the apertures
xdc_free (aperture);

% Shut down field
field_end



Simulation of Ultrasound Systems using Field II
Part 2: Imaging with arrays
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Conventional imaging methods
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Typical transducers
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Linear or phased array Convex array

Focusing and beamforming
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Electronic focusing

t

0

Excitation pulses

Transducer
elements

Beam shape

(a)

t

0

Excitation pulses

Transducer
elements

Beam shape

Beam steering and focusing

(b)

Time from the center of aperture to field point:

ti =
1
c

√
(xi− x f )2 +(yi− y f )2 +(zi− z f )2

(x f ,y f ,z f ) - position of the focal point (xi,yi,zi) - center of physical element number i,
Reference point on aperture:

tc =
1
c

√
(xc− x f )2 +(yc− y f )2 +(zc− z f )2

(xc,yc,zc) - reference center point on the aperture.
Delay to use on each element of the array:

∆ti =
1
c

(√
(xc− x f )2 +(yc− y f )2 +(zc− z f )2−

√
(xi− x f )2 +(yi− y f )2 +(zi− z f )2

)



Field II: Focusing and apodization time lines
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Focusing:

From time Focus at
0 x1,y1,z1

t1 x1,y1,z1

t2 x2,y2,z2
... ...

Apodization:

From time Apodize with
0 a1,1,a1,2, · · ·a1,Ne

t1 a1,1,a1,2, · · ·a1,Ne

t2 a2,1,a2,2, · · ·a2,Ne

t3 a3,1,a3,2, · · ·a3,Ne... ...

Program example - Transducer and phantom definition
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% Generate aperture for emission and set impulse response

emit_aperture = xdc_linear_array (N_elements, width, element_height, kerf,
1, 1,focus);

xdc_impulse (emit_aperture, impulse_response);
xdc_excitation (emit_aperture, excitation);

% Generate aperture for reception

receive_aperture = xdc_linear_array (N_elements, width, element_height, kerf,
1, 1,focus);

xdc_impulse (receive_aperture, impulse_response);

% Load the computer phantom

[phantom_positions,phantom_amplitudes]= cyst_phantom(50000);



Program example - Simulation of linear array imaging
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% Perform the image simulation
x= -image_width/2;
for i=1:no_lines

% Set the focus and apodization for this direction

xdc_center_focus (emit_aperture, [x 0 0]);
xdc_focus (emit_aperture, t0, [x 0 z_focus]);
xdc_center_focus (receive_aperture, [x 0 0]);
xdc_focus (receive_aperture, focus_times, [x*ones(Nf,1), zeros(Nf,1), focal_zones]);
xdc_apodization (emit_aperture, t0, apo_vector);
xdc_apodization (receive_aperture, t0, apo_vector);

% Calculate the received response
[v, t1]=calc_scat(emit_aperture, receive_aperture,

phantom_positions, phantom_amplitudes);
% Store the result
image_data(1:max(size(v)),i)=v;
times(i) = t1;

% Move the beam
x = x + d_x;
end

Program example - Simulation of phased array imaging
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% Initialize is the same as before

angles=90; % Degrees
no_lines=100; % Number of lines in image
emit_r=40/1000; % Emission focus[m]
focal_zones=[10:5:100]/1000; % Receive focal zones [m]
focus_times=(focal_zones-2.5/1000)/c; % Receive focal times [s]

% Do the imaging

dtheta=angles/no_lines/180*pi;
theta= -angles/2/180*pi;
for i=[1:no_lines]

% Set the focus for this direction

xdc_center_focus (emit_aperture, [0 0 0]);
xdc_focus (emit_aperture, t0, [emit_r*sin(theta) 0 emit_r*cos(theta)]);
xdc_center_focus (receive_aperture, [0 0 0]);
xdc_focus (receive_aperture, focus_times, [focal_zones*sin(theta) 0 ...

focal_zones*cos(theta)]);



Program example - Phased array imaging cont.
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% Calculate the received response

[rf_data, tstart]=calc_scat(emit_aperture, receive_aperture,
phantom_positions, phantom_amplitudes);

% Store the result

data(1:length(rf_data),i)=rf_data;
start_times(i)=tstart;

% Move the beam

theta=theta+dtheta;
end

% Make the image

make_image

Calibration for emitted field
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Calculated by Field II:

p(~r1, t) = e(t)∗ vt(t)∗h(~r1, t)

e(t) - Excitation voltage applied onto transducer

vt(t) - Impulse response from voltage to front face acceleration

Both initially set to δ-functions

Emitted field:
p(~r1, t) = ρ0

∂v(t)
∂t
∗ e(t)∗h(~r1, t)

Calibration: vt(t) = ρ0
∂v(t)

∂t



Calibration Measurement
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• Place hydrophone at focus or in the very far field,
so that h(~r1, t)≈ hkδ(t−|~r1|/c)

• Apply pseudo random noise to transducer and measure response
• Cross-correlation R12(τ) between excitation and measured response gives:

R12(τ) = E{e(t)p(~r1, t + τ)}= E{e(t)ρ0
∂v(t)

∂t
∗ e(t + τ)∗h(|~r1|, t)}

= E{e(t)e(t + τ)∗ρ0
∂v(t)

∂t
∗ khδ(t−|~r1|/c)}

= Re(τ)∗ρ0kh
∂v(τ−|~r1|/c)

∂τ
= σ2

0khρ0
∂v(τ−|~r1|/c)

∂τ
= σ2

0khvt(τ−|~r1|/c)

e(t) - White, random signal, Power: σ2
0

h(~r1, t)↔ H(~r1, f ) calibration constant: kh = H(~r1, f0), f0 - Transducer center frequency

Calibration Measurement II
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Scaled impulse response to use in Field II vt(k) is then:

vt(k) =
R12(k) f 2

s

σ2
0kh

, (1)

as the convolution operation in Field II includes a division with the sam-
pling frequency for each convolution to yield results independent of a change
in sampling frequency.



Measured impulse responses I
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Measured impulse responses II
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Values for impulse response and excitation
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Excitation:

e(t) = sin(2π f0t), 0≤ t ≤M/ f0

M: 1 - 2 periods for B-mode imaging or 4-8 periods for flow imaging.

Impulse response:

vt(t) = sin(2π f0t) ·hanning(t), 0≤ t ≤M/ f0

M: 1 - 2 periods for broad band transducers

More realistic minimum phase impulse responses can be designed using
the buttord and butter commands in Matlab.

Intensity Calculation and Calibration
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Spatial peak temporal average intensity:

Ispta =
1

Tpr f

∫ Tpr f

0

p2(~r1, t)
ρc

dt

Tpr f - Time between pulse emissions

ρc - Characteristic acoustic impedance

Method:
• Calculate intensity profile
• Scale excitation voltage to meet correct peak intensity



Intensity example
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Attenuating medium
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Attenuated spatial impulse response:

hatt(t,~r) =
∫

T

∫

S
a(t− τ, |~r|)δ(τ−

|~r|
c )

|~r| dSdτ

Amplitude of attenuation transfer function:

|A( f , |~r|)|= exp(−α|~r|)exp(−β( f − f0)|~r|)
Assuming a minimum phase attenuation results in:

A( f , |~r|) = exp(−α|~r|)exp(−β( f − f0)|~r|)× exp(− j2π f (τb+ τm
β
π2|~r|)

× exp( j
2 f
π

β|~r| ln(2π f ))

τb is bulk propagation delay per unit length and equals 1/c.

τm is minimum phase delay factor. Gurumurthy and Arthur (1982) suggests a value of 20 to fit dispersion in

tissue.



Parameters in Field II
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Attenuation transfer function used in Field II:

A( f , |~r|) = exp(−α|~r|)exp(−β( f − f0)|~r|)× exp(− j2π f (τb+ τm
β
π2|~r|)

× exp( j
2 f
π

β|~r| ln(2π f ))

α - Frequency independent attenuation at the frequency f0 [dB/m]
β - Frequency dependent attenuation factor around f0 [dB/m Hz]
τm = 20, τb = 1/c
r - Distance from center of element to field point

Setting attenuation in Field II
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α - Frequency independent attenuation at the frequency f0 [dB/m]
β - Frequency dependent attenuation factor around f0 [dB/m Hz]

Note that α and β should correspond, so that α = f0β.

So for 0.5 dB/[MHz cm] around f0 = 3 MHz use this:

set_field (’att’,1.5*100);
set_field (’Freq_att’,0.5*100/1e6);
set_field (’att_f0’,3e6);
set_field (’use_att’,1);



Simulation of Ultrasound Systems using Field II
Part 3: Scattered fields and imaging

Jørgen Arendt Jensen

Center for Fast Ultrasound Imaging
Department of Health Technology, Bldg 349

Technical University of Denmark
2800 Kgs. Lyngby

Denmark

Outline
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• Derivation of wave equation
• Finding the scattered field
• Finding the received signal
• Simulating imaging using Field II
• Examples of use: Simulating in-vivo B-mode images

Notes: JAJ: Pages 21 - 57 + Field II Users’ guide



Basic equations
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Constitutive (pressure-density relations, material):
1
c2

∂p1

∂t
=

∂ρ1

∂t
+~u ·∇ρ

Dynamic (description of motion):

ρins
d~u
dt

=−∇Pins

Continuity (conservation of mass):
∂ρins

∂t
=−∇ · (ρins~u)

Quantities:
P - mean pressure of medium, p1 - pressure variation due to ultrasound wave
ρ - density of undisturbed medium, ∆ρ(~r) - small density variation in tissue
ρ1 - density change due to ultrasound wave
c - speed of sound, ∆c(~r) - small speed of sound variation in tissue

Wave equation
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Approximations:

Pins(~r, t) = P+ p1(~r, t)
ρins(~r, t) = ρ(~r)+ρ1(~r, t)

ρ(~r) = ρ0+∆ρ(~r), c(~r) = c0+∆c(~r)

Mix basic equations and use small perturbation approximations gives the
wave equation:

∇2p1−
1
c2

0

∂2p1

∂t2 =−2∆c
c3

0

∂2p1

∂t2 +
1
ρ0

∇(∆ρ) ·∇p1

Left side: standard wave propagation

Right side: terms accounting for scattering



Scattered field
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ps(~r2, t) =
∫

V ′

∫

T

[
1
ρ0

∇(∆ρ(~r1)) ·∇p1(~r1, t1)−
2∆c(~r1)

c3
0

∂2p1(~r1, t1)
∂t2

]
G(~r1, t1 |~r2, t)dt1 d3~r1

G is Green’s function:

G(~r1, t1 |~r2, t) =
δ(t− t1− |~r2−~r1|

c0
)

4π |~r2−~r1 |

Born approximation
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Define scattering operator:

Fop =
1
ρ0

∇(∆ρ(~r1)) ·∇ − 2∆c(~r1)

c3
0

∂2

∂t2

Gi = integration operator (volume & time)

Pressure field inside scattering region is:

p1(~r, t) = pi(~r, t)+ ps(~r, t)

pi - incident pressure field
ps - scattered pressure field

Born approximation:

psb(~r2, t) = GiFop [pi(~r1, t1)+GiFop{pi(~r1, t1)+ ....}]
= GiFop pi(~r1, t1)+ [GiFop]

2pi(~r1, t1)+ ....

Keep only first term (first order Born approximation)

ps1(~r2, t) = GiFoppi(~r1, t1)



Final solution to wave equation:

Jørgen Arendt Jensen 65

Received voltage signal:

pr(~r5, t) =
ρ0

2c2
0

∂2Em(t)
∂t2 ?

t
∂v(t)

∂t
?
t

∫

V ′

[
∆ρ(~r1)

ρ0
− 2∆c(~r1)

c0

]
hpe(~r1,~r5, t)d3~r1

= vpe(t) ?t
fm(~r1) ?r

hpe(~r1, t)

Electrical impulse response: vpe(t) =
ρ0

2c2
0

∂2Em(t)
∂t2 ?

t
∂v(t)

∂t
Transducer spatial response: hpe(~r1,~r5, t) = h(~r1,~r5, t) ?t

h(~r5,~r1, t)

Scattering term: fm(~r1) =
∆ρ(~r1)

ρ0
− 2∆c(~r1)

c0

Ultrasound fields
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Emitted field:
p(~r1, t) = ρ0

∂v(t)
∂t
∗h(~r1, t)

Pulse echo field:

vr(~r1, t) = vpe(t)∗ fm(~r1)∗hpe(~r1, t)

fm(~r1) =
∆ρ(~r1)

ρ0
− 2∆c(~r1)

c
Continuous wave fields:

F {p(~r1, t)} , F {vr(~r1, t)}

All fields can be derived from the spatial impulse response.



Point spread functions
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Point spread function for concave, focused transducer

top: simulation top bottom: tank measurement (6 dB contour lines)

Examples
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Same transducer with a Gaussian apodization.



Phased array
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Response of 64 elements phased array focused at (30,0,70) mm.

Calculation of Continuous wave field

Jørgen Arendt Jensen 70

Emitted pressure:

P( f ) = F {p(~r1,n)}=
N

∑
n=0

p(~r1,n)exp(− j2π f n∆T )exp(− j2π f t0)

N - Samples in impulse response

∆T - Sampling interval

t0 - Time for first sample in response

Pulse-echo field:

P( f ) = F {vr(~r1,n)}=
N

∑
n=0

vr(~r1,n)exp(− j2π f n∆T )exp(− j2π f t0)

Both can be found for any frequency.



Continuous wave field
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Continuous wave field from a 32 × 32 elements 2D matrix transducer at 3
MHz. Different elements used in transmit and receive.

Realistic simulation of in-vivo imaging
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Scattered field:

vr(~r1, t) = vpe(t)∗ fm(~r1)∗hpe(~r1, t)

fm(~r1) =
∆ρ(~r1)

ρ0
− 2∆c(~r1)

c

∆ρ(~r1) - Spatial variation in density
∆c(~r1) - Spatial variation in speed of sound

Description of spatial variation in backscattering from anatomic image:

σ fm(~r1)



Scattering data from Visible Human Project
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Simulation result for artificial kidney
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Cyst phantom
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Conclusion
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• You should by now have an understanding of both the theory and func-
tion of the Field II program and its features

• Any kind of transducer, excitation, impulse response, focusing and apodiza-
tion can be simulated

• Simulations are done in C
• Scripting and pre- and post processing are done in Matlab
• All linear ultrasound imaging systems can be simulated

including anatomic and flow systems
• Conventional and synthetic aperture systems can be simulated. Detailed

in next lecture
• Simulations and measurements are accurate for both point spread func-

tions, images, and flow modeling, which will described during the week.
• Simulations are easy to parallelize for shared disk, heterogeneous sys-

tems on multiple computers


