
DTU

Research scanners at CFU

by Borislav Tomov, CFU

Center for Fast Ultrasound Imaging Department of Health Technology

Why

- Commercial scanner : video out
- Comm. scanner + research interface : RF BF data
- Research scanner: full access to setup and RF channel data

Summer School on Advanced Ultrasound Imaging 2023

Center for Fast Ultrasound Imaging Technical University of Denmark

How

- Setup of emission sequences (frames)
- Setup of transmit
- Setup of receive
- Setup of image processing/navigation

Center for Fast Ultrasound Imaging Technical University of Denmark Summer School on Advanced Ultrasound Imaging 2023

DTU

2-channel sampling system (1991)

ADC: 20MHz 12-bit

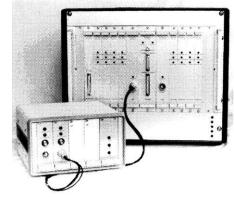
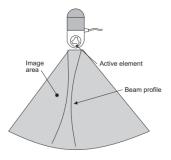
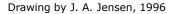




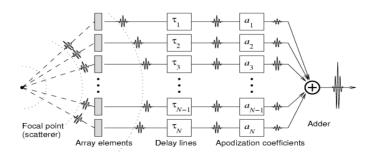
Photo out of paper by Jensen/Mathorhe, 1991

Sector scan transducer

Summer School on Advanced Ultrasound Imaging 2023

Center for Fast Ultrasound Imaging Technical University of Denmark

RASMUS (2001)


Remotely Accessible Software programmable Multi-channel Ultrasound System

Purpose of RASMUS

Center for Fast Ultrasound Imaging Technical University of Denmark Summer School on Advanced Ultrasound Imaging 2023

DTU

- Flexible transmission
- Storage of data for later experimental beamforming
- Real time processing and imaging for orientation

Center for Fast Ultrasound Imaging Technical University of Denmark

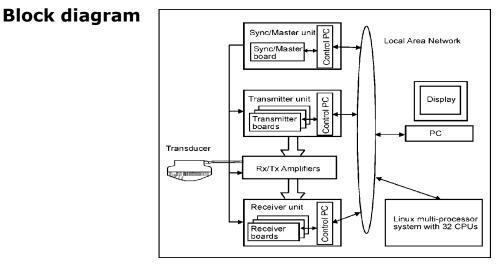


Diagram out of paper by Jensen et al., 1999

Center for Fast Ultrasound Imaging Technical University of Denmark Summer School on Advanced Ultrasound Imaging 2023

Construction

Photo by J.A. Jensen, 2002

Summer School on Advanced Ultrasound Imaging 2023

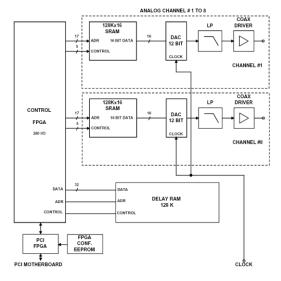
Center for Fast Ultrasound Imaging Technical University of Denmark

Timing board LP FILTER DAC TGC LP FILTER DAC REF LUT SYNC CLK TEMP. OSC SENSOR CLK LEDS PCI FPGA (x8) → ATT 0 → ATT 1 → ATT 2 CONF. E²PROM PCI BUS

Center for Fast Ultrasound Imaging Technical University of Denmark Summer School on Advanced Ultrasound Imaging 2023

Transmitter boards

- DAC: 40 MHz, 12-bit
- 256 kB per channel waveform RAM
- Independent waveforms for each channel and emission
- 16 channels/board
- 128 channels in total



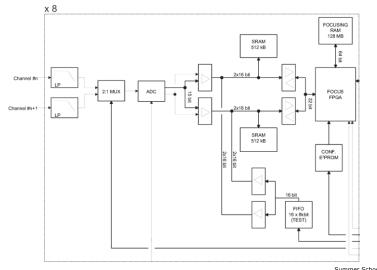
Summer School on Advanced Ultrasound Imaging 2023

Center for Fast Ultrasound Imaging Technical University of Denmark

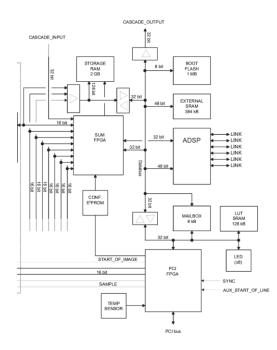
Transmitter boards

Center for Fast Ultrasound Imaging Technical University of Denmark Summer School on Advanced Ultrasound Imaging 2023

Receiver boards

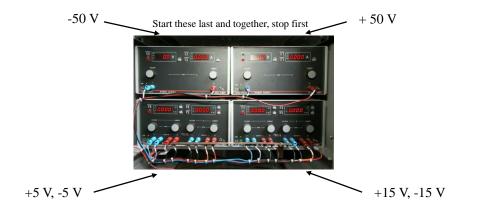

- 8 channels per board
- 2-to-1 multiplexing
- ADC: 40 MHz, 12-bit
- 256 MB RAM per channel (3 seconds of real time data, 2 GB)

Summer School on Advanced Ultrasound Imaging 2023


Center for Fast Ultrasound Imaging Technical University of Denmark DTU

Receiver boards

Center for Fast Ultrasound Imaging Technical University of Denmark Summer School on Advanced Ultrasound Imaging 2023


DTU

Summer School on Advanced Ultrasound Imaging 2023

Center for Fast Ultrasound Imaging Technical University of Denmark

Power supplies

Center for Fast Ultrasound Imaging Technical University of Denmark Summer School on Advanced Ultrasound Imaging 2023

DTU

Outline-software

- Organization
- •Commands
 - •Initialization and closing
 - •Setup general commands
 - •Setup timing board
 - •Setup transmitter
 - •Setup receiver
 - Acquisition
 - •Reading data

Software organization

Host PC:

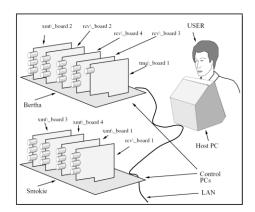
- user sits at it
- runs Matlab
- C library functions called from Matlab

Control PC:

- contains RASMUS boards
- runs drivers
- runs execution server "sys_master_ctrl"

Center for Fast Ultrasound Imaging Technical University of Denmark Summer School on Advanced Ultrasound Imaging 2023

sys_init([file_name, [show_logo,[interrupt]]])


- Uses /home/username/.syslib by default

sys_end

- Releases the command server for other users and the memory used by Matlab

sys_abort

- Stops the command server

Setup - general

sys_set_param(parameter_name, parameter_value)
For now, c and f_s (default 1540 and 40e6)

sys_set_no_lines(number_lines [, skipped, sampled])

sys_set_sampling_interval(start_depth, end_depth)

sys_set_fprf(pulse_repetition_frequency)

tr_bk8802, tr_bk8804, tr_general, xmt_set_no_samples(n)

Center for Fast Ultrasound Imaging Technical University of Denmark Summer School on Advanced Ultrasound Imaging 2023

DTU

Setup-timing board

tmg_ref_voltage(voltage)

- reference voltage for the TGC amplifiers

tmg_set_attn(attenuation _code)

- attenuation of the transmit amplifiers.

tmg_tgc2(gain_values)
 - 0 to 48 (in dB), 1 value per microsecond

Setup- transmitter xmt_set_ref_v(voltage) xmt_center_focus(line_numbers,point_coordinates [, frame_no]) xmt_focus(line_numbers,point_coordinates [, frame_no]) xmt_excitation(samples_normalized) xmt_apodization(line_no, apodization [, frame_no]) xmt_mode(continuous_mode, use_external_trigger)

Center for Fast Ultrasound Imaging Technical University of Denmark Summer School on Advanced Ultrasound Imaging 2023

Setup-receiver

rcv_center_focus(line_numbers, point_coordinates)

rcv_focus(line_no, switch_pos, times, focal_points)

rcv_dynamic_focus (line_no, switch_pos, time, angle_xz, angle_yz)

rcv_apodization (line_no, times, values)

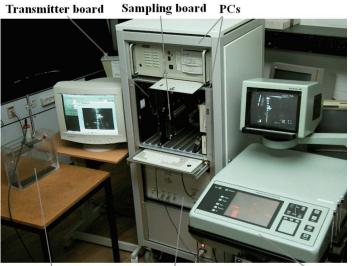
rcv_mode(...)

Acquisition

tmg_measure(no_images)

Center for Fast Ultrasound Imaging Technical University of Denmark Summer School on Advanced Ultrasound Imaging 2023

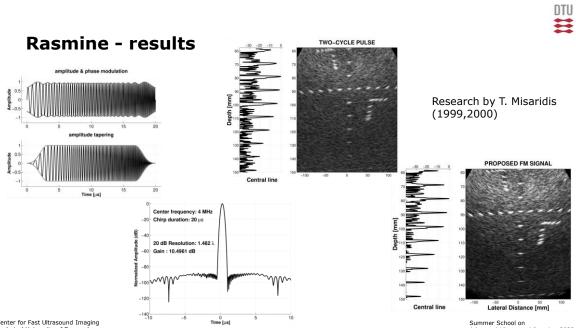
Reading data


rcv_get_current_image(brd_no)

rcv_set_current_image(offset, relative)

Center for Fast Ultrasound Imaging Technical University of Denmark

2001 - Rasmine


Photo by Thanassis Misaridis, 2001

Center for Fast Ultrasound Imaging Technical University of Denmark

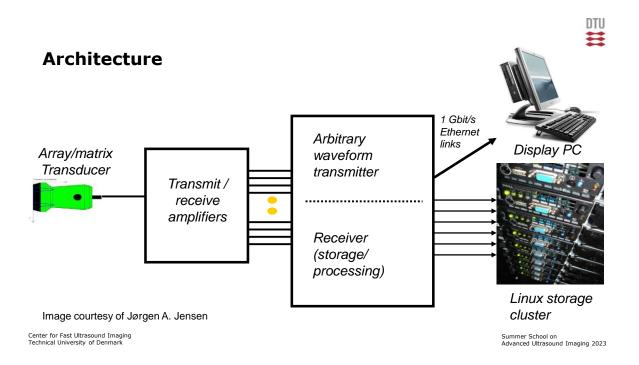
Amplifier

US scanner Summer School on Advanced Ultrasound Imaging 2023

Center for Fast Ultrasound Imaging Technical University of Denmark

SARUS (2010)

Synthetic Aperture Real-time Ultrasound imaging System


Center for Fast Ultrasound Imaging Technical University of Denmark Summer School on Advanced Ultrasound Imaging 2023

DTU

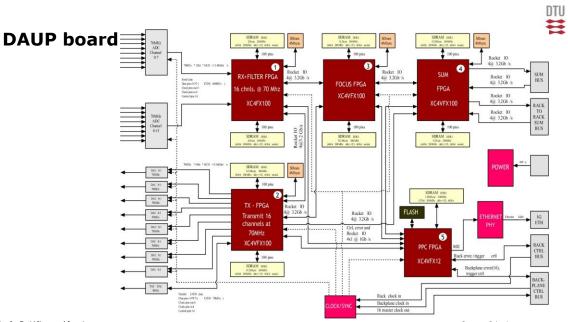
Purpose of SARUS

- It is an experimental ultrasound imaging system:
 - Flexible transmit side 1024 independent channels, up to 4096 samples at 70 MHz, up to 8192 different excitations per channel
 - Flexible receive side selective sampling on 0 to 16 channels per board (0, 4 or higher even numbers), 1024 channels in total, 1 second continuous sampling at 70 MHz
 - -Real-time preview / navigation capability also using SA imaging
 - -Transportable

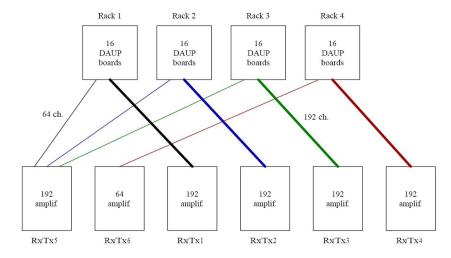
Center for Fast Ultrasound Imaging Technical University of Denmark

- Digital acquisition / processing boards
 - -64 boards x 16 channels, 1 board is timing ctrl
 - -Distributed in 4 racks / 2 cabinets
- Transmit / receive amplifiers
 - -128 amplifier boards in 6 boxes, up to 24 brd. per box
- •6 B-K transducer connectors (5 x 192 ch. and 1 x 64 ch.)
- Cabling 512 cables

Initial cooling setup

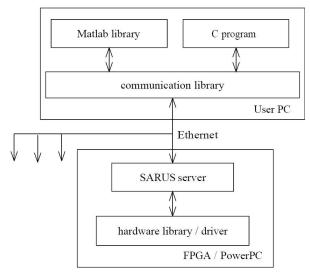


Photos by M. F. Rasmussen, 2012


Summer School on Advanced Ultrasound Imaging 2023

Center for Fast Ultrasound Imaging Technical University of Denmark

Center for Fast Ultrasound Imaging Technical University of Denmark


Cable connections

Center for Fast Ultrasound Imaging Technical University of Denmark Summer School on Advanced Ultrasound Imaging 2023

DTU

Software structure

Center for Fast Ultrasound Imaging Technical University of Denmark

Concepts/terms

- Image a pretty picture for display, made of lines
- An emission provides data for one image line, or for a whole low-resolution image in SA imaging.
- Frame a set of emissions that accomplish the task of providig data for a B-mode image, color flow map, etc.
- A sequence is made of frames in a chain
 - /// nowadays, people call a frame sequence

Center for Fast Ultrasound Imaging Technical University of Denmark Summer School on Advanced Ultrasound Imaging 2023

DTU

General SARUS commands

- sarus_init(file_name)
- sarus_end
- sarus_clear
- sarus_reset_fpgas

Presentation of SARUS

Geometry and timing setup commands

- sarus_use_transducer(xdc_name, serial_num,flags)
- sarus_set_speed_of_sound(c)
- sarus_create_frame(no_emissions[,...])
- sarus_set_tprf(tprf_array)
- sarus_set_fprf(fprf_scalar)

Presentation of SARUS

37 Jummer School on Advanced Ultrasound Imaging 2023

DTU

Transmitter setup using virtual sources

- sarus_xmt_define_excitation(vector)
- sarus_xmt_define_virtual_source(start_e, end_e, weights, delays, wavetype, prop_dir_focus, use_fine_delay)
- sarus_xmt_define_virtual_source_rc(....)
- sarus_xmt_set_emission_vs(em, virt_srcs, ha, weights)

Receiver setup

- sarus_set_sampling(emissions, start_d, end_d, elements_store, elements_process)
- sarus_set_sampling_rc(emissions, start_d, end_d, elements_store, elements_process)
- sarus_set_sampling_times(emissions, start_t, end_t, elements_store, elements_process)
- sarus_tgc(emissions, tgc_vector), 5 / microsec.
- sarus_set_decimation(dec_factor,use_avg)

Presentation of SARUS

39ummer School on Advanced Ultrasound Imaging 2023

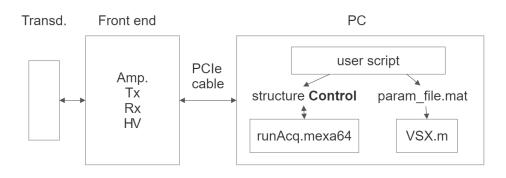
Reading data

- sarus_read_element_data(elements, frame, em)
- sarus_read_frame_data(frame, st_em, no_em...)
- sarus_read_single_channel(ch_idx, no_frm...)

Saving data

- sarus_set_description_file(file_name)
- sarus_set_emission_types(frm_type, em_type, fr)
- sarus_set_scan_object(par_name, par_value)
- sarus_save_data_set2(no_seq[, path, struct])
- sarus_compress_acquisition(path)

Center for Fast Ultrasound Imaging Technical University of Denmark



Center for Fast Ultrasound Imaging Technical University of Denmark Summer School on Advanced Ultrasound Imaging 2023

Vantage control structure

Center for Fast Ultrasound Imaging Technical University of Denmark

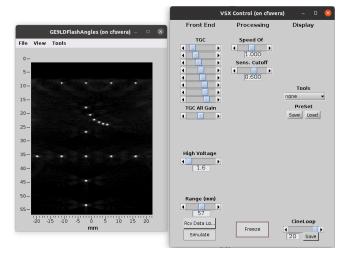
Vantage setup parameters

- Resource
- Trans
- •TW
- TGC
- TX
- Receive
- Event
- SeqControl
- TPC

PData

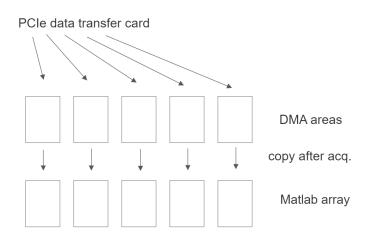
- Media
- Recon
- Process
- UI

Center for Fast Ultrasound Imaging Technical University of Denmark Summer School on Advanced Ultrasound Imaging 2023


Vantage interaction/control

- Structure Control:
 - field Command
 - field Parameters

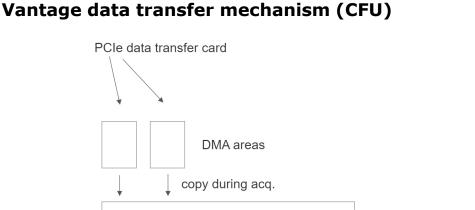
DTU


Vantage GUI (default)

Center for Fast Ultrasound Imaging Technical University of Denmark Summer School on Advanced Ultrasound Imaging 2023

DTU

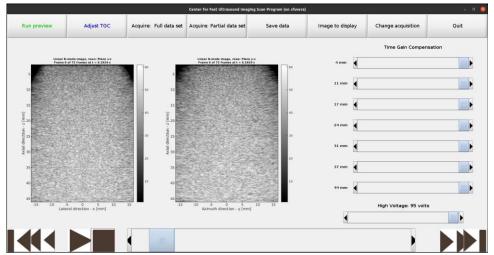
Vantage data transfer mechanism (default)



Vantage system hardware limitations

- 132 000 emissions, at Fprf=5000 gives 26 seconds
- PC RAM utilization < 50 % with default data transfer mechanism
- DMA transfer size > 64 MB for performance, 2GB max (at CFU: 1.7 GB),
- 3-level transmit
- Tx apodization result not visible
- Tx waveform synthesis has discrete center frequency values
- PC RAM allocation takes 1 sec/GB
- The PC runs a non-real-time OS, GUI operations eat time, disturb acq.

Center for Fast Ultrasound Imaging Technical University of Denmark Summer School on Advanced Ultrasound Imaging 2023


Matlab array

By idea of Ron Daigle (Verasonics)

Center for Fast Ultrasound Imaging Technical University of Denmark

CFU_scan

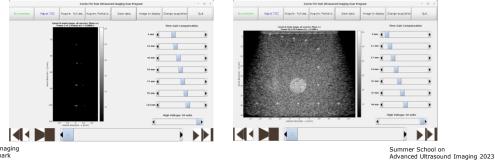
Center for Fast Ultrasound Imaging Technical University of Denmark

Summer School on Advanced Ultrasound Imaging 2023

	n'	T	8.8	
		I.		
- 1	υ.		U	
	-		-	
1	-	-	-	۰.
-	-	-	۲	•
	é	-	ó	2

Scanner parameters

Scanner	2-ch. system	RASMUS	SARUS	Vantage 256	ULA-OP
In use since, year	1991	2000	2010	2020	-
Channels	2	128	1024	256 (x4)	356
Fs, MHz	20	40	70	62.5	78
RAM, GB	7-12 MB	16	128	PC*	80
Throughput, GB/s	0.04	5.12	143.36	3.5 (max. 6.6)	40
Sampling time, s	0.17	3.4	0.9	160*	2
Transmit	-	Linear	Linear	3-level	Linear
Preview	No	Yes	Yes	Yes	Yes (USB 3)
Mobile	Yes	Yes	No	Yes	Yes


*Vantage PC config. at CFU: 512 GB RAM

Center for Fast Ultrasound Imaging Technical University of Denmark

DTU

Excercise

- Start CFU_scan
- Perform a scan of a wire (1 frame) and a tissue phantom (10 frames)
- Save the RF data
- Beamform it using your own beamformer
- Display the images with correct axes and dynamic range of 60 dB.

Center for Fast Ultrasound Imaging Technical University of Denmark

How to extract emission data

To extract emission data, use the function:

where the output is:

- filtered_samples RF data with matched filter applied
- t_start start time of the RF data
- rx_fs sampling frequency of the recorded RF data
- elem_position element positions [N x 3], containing X, Y and Z
- vsrc_position position of the virtual source
- c speed of sound in the phantom