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Outline

• Basic ultrasound and scattering from blood

• Model for ultrasound interaction with moving particles

• Physical effects and limitations in traditional velocity systems

• Color flow mapping - phase shift (autocorrelation) approach

• Color flow mapping - cross-correlation approach

• Stationary echo canceling

• Simulation of flow imaging systems
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Characteristics of blood flow in humans

• Pulsating flow, repetition from 1 to 3 beats/sec

• Not necessarily laminar flow

• Short entrance lengths

• Branching

• Reynolds numbers usually below 2500, non-turbulent flow

• Very complicated flow patterns
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Conventional flow system

Triplex scan with B-mode image, color flow image, and spectral display.

The square brackets indicate position and size of the range gate.
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The classical Doppler effect
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Doppler shift

fd =
2v

c
f0

f0 - Center frequency of transducer, c - Speed of sound,
v - Blood velocity

Effect of attenuation:

Down-shift in center frequency:

fmean = f0 − (β1B
2
r f

2
0 )z

Br - Gaussian bandwidth, β1 - Attenuation coefficient [Np/Hz m]
z - Depth

6



Attenuation down shift
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f0 = 3 MHz, β1 = 0.5 dB/[MHz·cm]

Typical Doppler shifts are 500 to 2000 Hz!

7

Basic measurement situation
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~v - Blood velocity, Tprf - Time between pulse emissions

~r1 - Position at first emission, ~r2 - Position at second emission

θ - Angle between ultrasound beam and blood velocity vector
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Time-space diagram for a

number of pulse emissions and receptions
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Time shift between emissions

ts =
2|v| cos θ

c
Tprf =

2vz
c
Tprf

Received signals

y1(t) = a · e(t− 2d

c
)

y2(t) = a · e(t− 2d

c
− ts) = y1(t− ts)

Tprf - Time between pulse emissions, vz - Velocity along beam

c - Speed of sound, e(t) - Emitted signal
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Model for the received signals (single scatterer)

First emission:

r0(t) = a sin(2πf0(t− 2d

c
))

Second emission:

r1(t) = a sin(2πf0(t− 2d

c
− ts))

i’th emission:

ri(t) = a sin(2πf0(t− 2d

c
− tsi))
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Sampling at one depth

Measurement at one fixed time tz or depth:

φ = 2πf0(tz −
2d

c
)

gives

ri(tx) = −a sin(2πf0tsi− φ) = −a sin(2π
2vz
c
f0 (Tprf i)− φ)

Frequency of sampled signal:

fp = −2vz
c
f0

Tprf - Time between pulse emissions, vz - Velocity along beam, c - Speed

of sound, i - Emission number

f0 - Center frequency
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Signal from a moving scatterer crossing a beam
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Frequency axis scaling
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Physical effects

Down shift in center frequency due to attenuation:

∆f = β1B
2
r f

2
0d0

Down shift in resulting pulsed wave spectrum:

∆fpw,att =
2vz
c
· β1B

2
r f

2
0d0,

Doppler shift from motion of blood during pulse interaction:

∆fpw,fd =
2vz
c

2vz
c
f0.

Non-linear components:

fnon-linear =
2vz
c
fhar

Bias depends on whether |fnon-linear| > fprf/2 or not.
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Spectrum for stationary signal
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RF signal for vessel with parabolic flow
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Hilbert transformation
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Original pulse spectrum
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Received velocity spectrum

One sided spectrum created by Hilbert
transforming the received signal. Thereby
the sign of the frequency and velocity can
be detected.
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Pulsed wave systems using complex signals
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Pulsed wave system

I channel

Q channel

ADC

ADC

cos(2π f0 t)

Amplifier

Transducer

S/H

S/H

sin(2π f0 t)

Conventional analog demodulation

Sample 
at 2 d0 /c

Sample 
at 2 d0 /c

h(t)

h(t)

g(t)

Demodulated signal:

g(t) = r(t) · ej2πf0t ∗ h(t)

t - time since pulse emis-
sion

g(t) =

∫ +∞

−∞
h(θ)r(t− θ)ej2πf0(t−θ)dθ = ej2πf0t

∫ +∞

−∞
r(t− θ)[e−j2πf0θh(θ)]dθ

e−j2πf0t · h(t) - Matched filter

ej2πf0t - Complex amplitude factor

Sampling operation: t = tx = 2d0

c

If tx = K
f0

we get: ej2πf0
K

f0 = 1, (Note also |ej2πf0
K

f0 | = 1)
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Effect of matched filter
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Improvement in instantaneous signal power to mean noise power
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Spectrum for a velocity distribution

Typical velocity distributions:

v(r) = v0

[
1−

( r
R

)po]

Parabolic flow for po = 2

Plug flow for po →∞

Frequencies received:

fd(r) =
2v0f0

c

[
1−

( r
R

)po]
cos(θ)

Power density spectrum is found by calculating the
number of scatterers that move at a particular ve-
locity:

r
1

R

l

Velocity
profile

Scatterers

Blood vessel Integration
volume

Distribution of scatterers in a tube

r radial position R radius of vessel
v0 maximum velocity found at center of vessel
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Power density spectrum from scatterer distribution

Normalized power density:

G(fd) =





2

po·fmax
(

1− fd
fmax

)1− 2
po

for 0 < fd < fmax

0 else

fmax =
2v0f0

c
cos(θ).

Parabolic profile (p0 = 2):

G(fd) =
1

fmax
for 0 < fd < fmax

r radial position R radius of vessel
v0 maximum velocity found at center of vessel ρp particle density
v1 velocity at the radial position r1 f0 ultrasound frequency

cos(θ) angle between ultrasound beam and flow
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Examples of flow profiles and corresponding power density spectra
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Idealized velocity profiles and corresponding normalized power density spectra.

Parabolic flow (po = 2) gives rectangular distribution of velocities and flat spectrum

Plug flow (po → ∞) the spectrum approaches a monochromatic shape, because nearly
all scatterers are moving at the same velocity.
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Examples of flow profiles and corresponding power density spectra
for flow in carotis and femoralis
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Series of velocity profiles for a common femoral artery (left) and common
carotid artery (right) together with corresponding velocity densities and
ideal sonograms. All curves are shown relative to the phase in the cardiac
cycle.
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Spectrogram from carotid artery
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Color flow map

Blood supply to and from the brain (Carotid artery and jugular vein)
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Color flow mapping using phase shift estimation

Received demodulated signal:

rcfm(i) = a · exp(−j(2π
2vz
c
f0iTprf + φf))

= a · exp(−jφ(t)) = x(i) + jy(i)

Velocity estimation:

dφ

dt
=
d
(
−2π2vz

c f0t+ φ
)

dt
= −2π

2vz
c
f0

Find the change is phase as a function of time gives quantity proportional

to the velocity.
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Realization

tan(∆φ) = tan

(
arctan

(
y(i)

x(i)

)
− arctan

(
y(i− 1)

x(i− 1)

))

=

y(i)
x(i) −

y(i−1)
x(i−1)

1 + y(i)
x(i) ·

y(i−1)
x(i−1)

=
y(i) · x(i− 1)− y(i− 1)x(i)

x(i)x(i− 1) + y(i)y(i− 1)

using that

tan(A−B) =
tan(A)− tan(B)

1 + tan(A) tan(B)
.

Then

arctan

(
y(i)x(i− 1)− y(i− 1)x(i)

x(i)x(i− 1) + y(i)y(i− 1)

)
= −2πf0

2vz
c
Tprf .
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Color flow mapping using phase shift estimation

Using the complex autocorrelation:

R(m) = lim
N→∞

1

2N + 1

N∑

i=−N
r∗cfm(i)rcfm(i+m),

Actual determination from the complex autocorrelation:

vz = −cfprf
4πf0

arctan




Nc−2∑

i=0

y(i+ 1)x(i)− x(i+ 1)y(i)

Nc−2∑

i=0

x(i+ 1)x(i) + y(i+ 1)y(i)




= −cfprf
4πf0

arctan
(
={R(1)}
<{R(1)}

)

Corresponds to the mean angular frequency:

ω̄ =

∫+∞
−∞ ωP (ω)dω
∫+∞
−∞ P (ω)dω

P (ω) is the power density spectrum of the received, demodulated signal.
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Phase shift estimation with RF sample averaging

Averaging of RF samples:

vz = −cfprf
4πf0

arctan




Ns−1∑

n=0

Nc−2∑

i=0

y(n, i+ 1)x(n, i)− x(n, i+ 1)y(n, i)

Ns−1∑

n=0

Nc−2∑

i=0

x(n, i+ 1)x(n, i) + y(n, i+ 1)y(n, i)




x(n, i) RF sample for time index n and emission number i (in-phase component)
y(n, i) Quadrature component
fprf Pulse repetition frequency
f0 Center frequency of transducer
Ns Number of samples for one pulse length
Nc Number of emissions
c Speed of sound
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Color flow mapping using time shift estimation

t

Segment
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Pulse
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Time shift between signals:

ts =
2∆z

c
=

2|~v| cos(θ)

c
Tprf .

32



Signal relation between received signals

rs2(t) = rs1(t− ts)

Cross-correlation yields

R12(τ) =
1

2T

∫

T
rs1(t)rs2(t+ τ)dt =

1

2T

∫

T
rs1(t)rs1(t− ts + τ)dt

= R11(τ − ts)
R12(τ) = Rpp(τ) ∗ σ2

s δ(τ − ts) = σ2
sRpp(τ − ts)

Global maximum at τ − ts = 0.

Velocity estimate is:

v̂z =
c

2

t̂s

Tprf
.
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Cross-correlation system

TGC 
amplifier

Transducer
ADC DLCS/H

Pulser

Depth

Esti-
mator v

Matched
filter

RF sampling
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Color flow image

8 to 16 pulse emissions in each direction
Low accuracy for few emissions
Low frame rate for many emissions or image lines
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Calculation of the cross-correlation

R̂12d(n, iseg) =
1

Ns(Nc − 1)

Nc−2∑

i=0

Ns−1∑

k=0

rsi(k + isegNs)rsi+1(k + isegNs + n).

Largest detectable velocity:

vmax =
lg

Tprf
=

c

2
Ns
fprf

fs
.

Minimum velocity due to time quantization:

vmin =
c

2

fprf

fs
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Interpolated peak by polynomial fit

nint = nm −
R̂12d(nm + 1)− R̂12d(nm − 1)

2(R̂12d(nm + 1)− 2R̂12d(nm) + R̂12d(nm − 1))

Interpolated estimate:

v̂int =
c

2

nintfprf

fs
.
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Stationary echo canceling

t

Tprf

Sample time

r0 r1 r2 r3 ri

Pulse
emission

Canceling:

rc(i) =
1

2
(r(i− 1)− r(i))

yi(t) = yi−1(t− ts), ts =
2vz
c
Tprf

yc(t) =
1

2
(yi−1(t)− yi−1(t− ts))↔ Yc(f) =

1

2
Yi−1(f)(1− e−j2πfts)

Transfer function of filter: H(f) = 1
2
(1− e−j2πfts)
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Transfer function of filter

H(f) =
1

2
(1− e−j2πfts)
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v=1 m/s, fprf = 3.2 kHz.
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Reduction in signal-to-noise ratio due to filter

Rsnr =
snr

snrf
=

√√√√E[{p(t) ∗ sc(t)}2]

E[n2(t)]

1√
2

√√√√E[{p(t) ∗ h(t; ts) ∗ sc(t)}2]

E[n2(t)]

=
√

2

√√√√ E[{p(t) ∗ sc(t)}2]

E[{p(t) ∗ h(t; ts) ∗ sc(t)}2]
=
√

2

√√√√ Rp(0)

Rp(τ) ∗Rh(τ, ts)|τ=0
.

p(t) - Pulse, n(t) - Measurement noise, sc(t) - Scattering signal

h(t; ts) - Impulse response of filter, Rp(τ) - Autocorrelation of pulse,

Rh(τ, ts) - Autocorrelation of filter
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Reduction in signal-to-noise ratio due to stationary echo canceling
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Gaussian 3 MHz pulse with relative bandwidth of 0.2, fprf = 3.2 kHz.
Large reduction at low velocities.
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Problems in current color flow imaging systems

• Frame rate is linked to number of lines in image

• More emissions gives lower frame rate

• Few emissions gives high standard deviation

• Only velocity along the ultrasound beam is found

• Stationary echo canceling is difficult due to few samples

• Slow moving flow is difficult to detect

• All these issues will be addressed in the lecture on SA flow imaging
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Pulse Echo Ultrasound fields

Pulse echo field:

vr(~r1, t) = vpe(t) ∗ fm(~r1) ∗ hpe(~r1, t)

= vpe(t) ∗ fm(~r1) ∗ ht(~r1, t) ∗ hr(~r1, t)

fm(~r1) =
∆ρ(~r1)

ρ0
− 2∆c(~r1)

c

Change in density: ∆ρ(~r1), change in speed of sound: ∆c(~r1)
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Simulation in Field II

Pulse-echo model:

pr(~r1, ~r2, t) = vpe(t) ?
t
fm(~r1) ?

r
hpe(~r1, ~r2, t),

Neglect the Doppler effect and use:

~r2(i+ 1) = ~r2(i) + Tprf~v(~r2(i), t)

Scatterers are propagated between pulses according to their velocity
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Field II: An Example: Flow simulation

% Example of using Field II by Joergen Arendt Jensen, May 26, 2015

% Start the system and initialize the path

path(path,’/home/jaj/programs/field_II/M_files’)
path(path,’/home/jaj/programs/field_II/m_utilities’);

% Initialize the field system

field_init

% Generate the transducer apertures for send and receive

f0=5e6; % Transducer center frequency [Hz]
M=4; % Number of cycles in emitted pulse
fs=100e6; % Sampling frequency [Hz]
c=1540; % Speed of sound [m/s]
lambda=c/f0; % Wavelength [m]
pitch=lambda/2; % Pitch of transducer
element_height=5/1000; % Height of element [m]
kerf=width/10; % Kerf [m]
width=pitch-kerf; % Width of element
focus=[0 0 60]/1000; % Fixed focal point [m]

45

N_elements=64; % Number of physical elements
Nshoots=5000; % Number of shots to be processed

% Set the sampling frequency

set_sampling(fs);

% Generate aperture for emission

emit_aperture = xdc_linear_array (N_elements, width, element_height, kerf, 1, 1,focus);

% Set the impulse response and excitation of the emit aperture

impulse_response=sin(2*pi*f0*(0:1/fs:2/f0));
impulse_response=impulse_response.*hanning(max(size(impulse_response)))’;
xdc_impulse (emit_aperture, impulse_response);

excitation=sin(2*pi*f0*(0:1/fs:M/f0));
xdc_excitation (emit_aperture, excitation);

% Generate aperture for reception

receive_aperture = xdc_linear_array (N_elements, width, element_height, kerf, 1, 1,focus);

% Set the impulse response for the receive aperture



xdc_impulse (receive_aperture, impulse_response);

% Set a Hanning apodization on the apertures

apo=hanning(N_elements)’;
xdc_apodization (emit_aperture, 0, apo);
xdc_apodization (receive_aperture, 0, apo);

% Make the flow simulation

for i=1:Nshoots

% Generate the rotated and offset block of sample

theta=45/180*pi;
xnew=x*cos(theta)+z*sin(theta);
znew=z*cos(theta)-x*sin(theta) + z_offset;
scatterers=[xnew; y; znew;]’ ;

% Calculate the received response

[v, t1]=calc_scat(emit_aperture, receive_aperture, scatterers, amp’);

% Store the result

image_data(1:max(size(v)),i)=v’;
times(i) = t1;

% Propagate the scatterers and aliaze them
% to lie within the correct range

x1=x;
x=x + velocity*Tprf;
outside_range= (x > x_range/2);
x=x - x_range*outside_range;
end



Spectogram for femoral artery based on Womerlsy-Evans’ model

Spectogram for femoral artery
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Field II: CFM flow simulation

% This example shows how a linear array B-mode system scans an image
% when doing color flow mapping
%
% This script assumes that the field_init procedure has been called
% Here the field simulation is performed and the data is stored
% in rf-files; one for each rf-line done. The data must then
% subsequently be processed to yield the image. The data for the
% scatteres are read from the file pht_data.mat, so that the procedure
% can be started again or run for a number of workstations.
%
% Version 2.2 by Joergen Arendt Jensen, May 27, 2015

% Generate the transducer apertures for send and receive

f0=5e6; % Transducer center frequency [Hz]
fs=100e6; % Sampling frequency [Hz]
c=1540; % Speed of sound [m/s]
lambda=c/f0; % Wavelength [m]
width=lambda; % Width of element
element_height=5/1000; % Height of element [m]
kerf=0.05/1000; % Kerf [m]
focus=[0 0 70]/1000; % Fixed focal point [m]
N_elements=196; % Number of physical elements
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rec_N_active=64; % Number of active elements in receive
xmit_N_active=64; % Number of active elements in transmit

% Generate aperture for emission

xmit_aperture = xdc_linear_array (N_elements, width, ...
element_height, kerf, 1, 10,focus);

% Set the impulse response and excitation of the xmit aperture

impulse_response=sin(2*pi*f0*(0:1/fs:2/f0));
impulse_response=impulse_response.*hanning(max(size(impulse_response)))’;
xdc_impulse (xmit_aperture, impulse_response);

excitation=sin(2*pi*f0*(0:1/fs:2/f0));
xdc_excitation (xmit_aperture, excitation);

% Generate aperture for reception

receive_aperture = xdc_linear_array (N_elements, width, ...
element_height, kerf, 1, 10,focus);

% Set the impulse response for the receive aperture

xdc_impulse (receive_aperture, impulse_response);

% Do for the number of CFM lines

Ncfm=10;
for k=1:Ncfm

% Load the computer phantom

cmd=[’load sim_flow/scat_’,num2str(k),’.mat’]
eval(cmd)

% Do linear array imaging

no_lines=20; % Number of lines in image
image_width=40/1000; % Size of image sector
d_x=image_width/(no_lines-1); % Increment for image

% Set the different focal zones for reception

rec_zone_start=30/1000;
rec_zone_stop=100/1000;
rec_zone_size=10/1000;

focal_zones_center=[rec_zone_start:rec_zone_size:rec_zone_stop]’;
focal_zones=focal_zones_center-0.5*rec_zone_size;



Nf=max(size(focal_zones));
focus_times=focal_zones/1540;

% Set a Hanning apodization on the receive aperture
% Dynamic opening aperture is used.

Fnumber=2.0;
rec_N_active_dyn=round(focal_zones_center./(Fnumber*(width+kerf)));

for ii=1:Nf
if rec_N_active_dyn(ii)>rec_N_active

rec_N_active_dyn(ii)=rec_N_active;
end

rec_N_pre_dyn(ii) = ceil(rec_N_active/2 - rec_N_active_dyn(ii)/2);
rec_N_post_dyn(ii) = rec_N_active - rec_N_pre_dyn(ii) - ...

rec_N_active_dyn(ii);
rec_apo=(ones(1,rec_N_active_dyn(ii)));
rec_apo_matrix_sub(ii,:)=[zeros(1,rec_N_pre_dyn(ii)) rec_apo ...

zeros(1,rec_N_post_dyn(ii))];
end

% Transmit focus

z_focus=40/1000;

% Set a Hanning apodization on the xmit aperture

xmit_apo=hanning(xmit_N_active)’;

% Do imaging line by line

i_start=1;
x= -image_width/2 +(i_start-1)*d_x;

for i=i_start:no_lines
i

% Set the focus for this direction

xdc_center_focus (emit_aperture, [x 0 0]);
xdc_focus (xmit_aperture, 0, [x 0 z_focus]);
xdc_center_focus (receive_aperture, [x 0 0]);
xdc_focus (receive_aperture, focus_times,

[x*ones(Nf,1), zeros(Nf,1), focal_zones]);

% Calculate the apodization

xmit_N_pre = round(x/(width+kerf) + N_elements/2 - xmit_N_active/2);
xmit_N_post = N_elements - xmit_N_pre - xmit_N_active;
xmit_apo_vector=[zeros(1,xmit_N_pre) xmit_apo zeros(1,xmit_N_post)];



rec_N_pre(i) = round(x/(width+kerf) + N_elements/2 - rec_N_active/2);
rec_N_post(i) = N_elements - rec_N_pre(i) - rec_N_active;

rec_apo_matrix=[zeros(size(focus_times,1),rec_N_pre(i)) ...
rec_apo_matrix_sub zeros(size(focus_times,1), ...

rec_N_post(i))];

xdc_apodization (xmit_aperture, 0, xmit_apo_vector);
xdc_apodization (receive_aperture, focus_times , rec_apo_matrix);

% Calculate the received response

[rf_data, tstart]=calc_scat(xmit_aperture, receive_aperture, ...
positions, amp);

% Store the result

cmd=[’save sim_flow/rft’,num2str(k),’l’,num2str(i), ...
’.mat rf_data tstart’]

eval(cmd)

% Steer in another direction

x = x + d_x;

end % Loop for lines

end % CFM loop

% Free space for apertures

xdc_free (xmit_aperture)
xdc_free (receive_aperture)
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Exercise on ultrasound RF flow data

Basic model, first emission:

r1(t) = p(t) ∗ s(t)

s(t) - Scatterer amplitudes (white, random, Gaussian)

Second emission:

r2(t) = p(t) ∗ s(t− ts) = r1(t− ts)

Time shift ts:

ts =
2vz
c
Tprf

r1(t) Received voltage signal p(t) Ultrasound pulse
∗ Convolution vz Axial blood velocity
c Speed of sound Tprf Time between pulse emissions
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A simple interpretation - a collection of scatterers
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Signal from a collection of scatterers cross-
ing a beam from a concave transducer.

Collection of scatterers:

rs(i) = −
N∑

k=1

ak sin(2π
2vz(k)

c
f0Tprf i− φk)

φk = 2πf0

(
tz −

2dk
c

)

k - Scatterer number

For a plug flow:

yi(t) = p(t) ∗ e(t− its) = y0(t− its)
ts =

2vz
c
Tprf

For a sampled system:

yi(n) = p(n) ∗ e(n− i · ns) = y0(n− i · ns)
ns =

2vz
c
Tprffs
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Signal processing

1. Find ultrasound pulse (load from file)

2. Make scatterers

3. Generate a number of received RF signals

4. Study the generated signals

5. Compare with simulated and measured RF data

6. Make a function for velocity estimation using cross-correlation

7. Validate it on the simulated data and apply it to the femoral data
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Signal relation between received signals

rs2(t) = rs1(t− ts)

Cross-correlation yields

R12(τ) =
1

2T

∫

T
rs1(t)rs2(t+ τ)dt =

1

2T

∫

T
rs1(t)rs1(t− ts + τ)dt

= R11(τ − ts)
R12(τ) = Rpp(τ) ∗ σ2

s δ(τ − ts) = σ2
sRpp(τ − ts)

Global maximum at τ − ts = 0.

Velocity estimate is:

v̂z =
c

2

t̂s

Tprf
.
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Calculation of the cross-correlation

R̂12d(n, iseg) =
1

Ns(Nc − 1)

Nc−2∑

i=0

Ns−1∑

k=0

rsi(k + isegNs)rsi+1(k + isegNs + n).

Interpolated peak by polynomial fit

nint = nm −
R̂12d(nm + 1)− R̂12d(nm − 1)

2(R̂12d(nm + 1)− 2R̂12d(nm) + R̂12d(nm − 1))

Interpolated estimate:

v̂int =
c

2

nintfprf

fs
.
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