

2024 International Summer School on Advanced Ultrasound Imaging **Technical University of Denmark**

SUper-Resolution ultrasound imaging using the Erythrocytes (SURE)


Mostafa Amin Naji PhD student Center for Fast Ultrasound imaging (CFU) **Technical University of Denmark (DTU)**

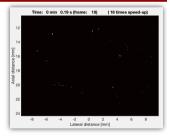
mamna@dtu.dk

DTU **♯** Outline

- · Limitation of super resolution ultrasound imaging with MB (ULM)
- Current approach
- Limitations for clinical use
- SURE: SUper Resolution ultrasound imaging using the Erythrocytes
- Processing pipeline
- Field II simulated phantom
- 3-D Printed phantom
- In vivo rat experiments
- Comparison to micro-CT and ULM
- Human studies
- · Summary

Advantages of SRI with microbubbles:

• Sparse distribution of microbubbles -> Easy isolation

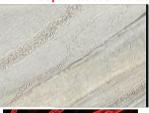

Disadvantages of SRI with microbubbles:

1- Time limitation:

- Long acquisition in minutes (ex. 1-10 mins)
- · Movement of probe and organ
- · Blood flow and pressure changes over time so organ volume can vary

2- Bubble trouble:

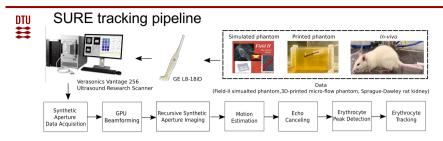
- · Fragile microbubbles
- Enough but not too many
- · Bubbles are lost over time
- Bubbles are killed by the emission pressure from the probe
- · Low MI gives low SNR for image


10 min Super Resolution Image

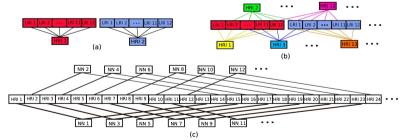
DTU ≡

Super-resolution without contrast agents

SUper Resolution ultrasound imaging using Erythrocytes (SURE)



- Using Erythrocytes (red blood cells) as the target instead of fragile MBs.
- Abundance of targets (5 million cells per mm3)
- · Non-invasive, contrast free ultrasound
- Fast Imaging, Real time (seconds)
- Full MI can be used (1.9 below FDA, 0.05-0.2 for SRI)


- J. A. Jensen et. al, "Fast super resolution ultrasound imaging using the erythrocytes," SPIE Medical Imaging 2022
- J. A. Jensen et al., "In Vivo Super Resolution Ultrasound Imaging using the Erythrocytes SURE," IUS 2022

- · 10 MHz GE L8-18i Hockey stick probe
- · SA sequence: 12 emissions
- · Frame rate: 416.7 Hz
- · Verasonics Vantage 256 scanner
- J. A. Jensen et al., "Fast super resolution ultrasound imaging using the erythrocytes," SPIE Medical Imaging 2022
- J. A. Jensen et al., "In Vivo Super Resolution Ultrasound Imaging using the Erythrocytes SURE," IUS 2022
- M. Amin-Naji et al., "Super Resolution Ultrasound Imaging Using the Erythrocytes: II: Velocity Images", TUFFC 2024.
- J.A. Jensen et al., "Super Resolution Ultrasound Imaging Using the Erythrocytes: I: Density Images", TUFFC 2024.

27 May 2024 Mostafa Amin Naji. PhD student, DTU Health Tech SUper-Resolution ultrasound imaging using Erythrocytes (SURE)

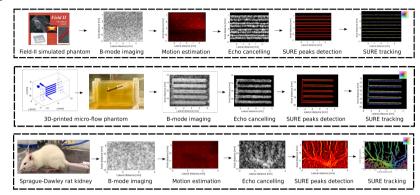
Recursive SA Imaging Recursive Nearest Neighbour (NN) tracker

LRI: Low-Resolution Image

=

- HRI: High-Resolution Image
- (a) Normal Synthetic Aperture (SA) imaging
- (b) Recursive SA imaging

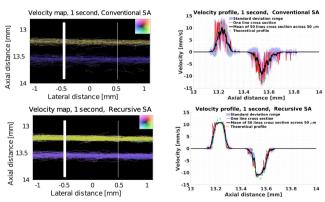
Frame rate from 208.3 to 2500 Hz


M. Amin-Naji et al., "Super Resolution Ultrasound Imaging Using the Erythrocytes: II: Velocity

M. Amin-Naji et. al, "Super Resolution Ultrasound using Recursive Imaging of Highly Dense Scatterers," IUS 2022.

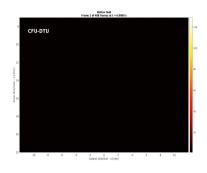
M. Amin-Naji et. al, "Recursive Imaging for Tracking High Density Scatterers in Super-Resolution Imaging", IUS 2023.

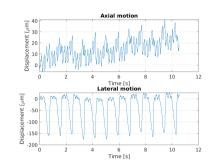
J.A. Jensen, "Recursive ultrasound imaging", Proc. IEEE Ultrason. Symp., vol. 2, pp. 1999.


SURE validation setup

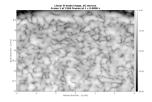
M. Amin-Naji et al., "Super Resolution Ultrasound Imaging Using the Erythrocytes: II: Velocity Images", TUFFC 2024.

DTU


Recursive SA Imaging Recursive NN tracker



M. Amin-Naji et al., "Super Resolution Ultrasound Imaging Using the Erythrocytes: II: Velocity Images", TUFFC 2024.

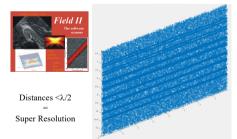


Motion estimation

Tissue signal removal

Field II simulated phantom

DTU

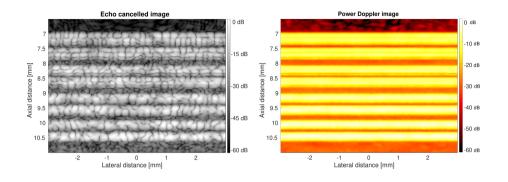

- · Spatial Align all images to a reference frame
- · Singular value decomposition (SVD) made
- · First singular values removed as tissue
- · Middle values are kept; the rest is noise
- SVD is applied on every 400 frames with SVD

CfU

· Accumulation of peak positions

Field II simulated phantom

Actual tube distance (wall-to-wall)	Actual tube distance (center-to-center)	Estimated tube distance (center-to-center)
125 μm (0.81λ)	150 μm (0.97λ)	146 µm
125 μm (0.81λ)	150 μm (0.97λ)	146 µm
75 μm (0.48λ)	100 μm (0.65λ)	103 μm
75 μm (0.48λ)	100 μm (0.65λ)	99 μm
45 μm (0.29λ)	70 μm (0.45λ)	70 μm
45 μm (0.29λ)	70 μm (0.45λ)	67 μm
25 μm (0.16λ)	50 μm (0.32λ)	54 μm
25 μm (0.16λ)	50 μm (0.32λ)	50 μm

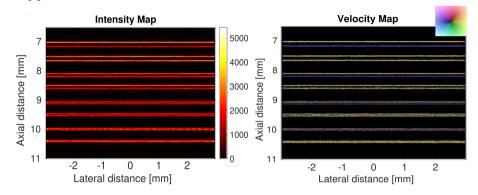

- Eight tube pairs (r=12.5 m) were simulated using Field-II
- · The flow directions are in the same and opposite directions
- · wavelength of 154 m.
- 250,000 scatterers for moving tissue
- · 200,000 scatterers inside the tubes
- 11,400 scatterers per resolution cell.
- M. Amin-Naji et. al, "Super Resolution Ultrasound using Recursive Imaging of Highly Dense Scatterers," IUS 2022.
- J.A. Jensen et al., "Super Resolution Ultrasound Imaging Using the Erythrocytes: I: Density Images", TUFFC 2024.
- M. Amin-Naji et al., "Super Resolution Ultrasound Imaging Using the Erythrocytes: II: Velocity Images", TUFFC 2024.

27 May 2024 Mostafa Amin Naji. PhD student, DTU Health Tech

Field II simulated phantom **SVD** echo cancelled image

Center for fast Ultrasound Imaging Department of Health Technology, Technical University of Denmark

Field II simulated phantom

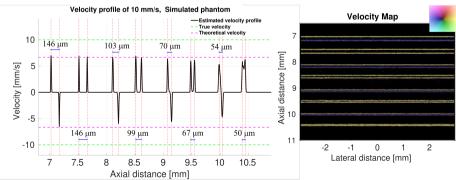


27 May 2024 Mostafa Amin Naji. PhD student, DTU Health T

SUper-Resolution ultrasound imaging using Erythrocytes (S

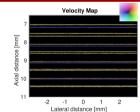
24 International Summer School on Advanced Ultracound Imagina

Field II simulated phantom


M. Amin-Naji et al., "Super Resolution Ultrasound Imaging Using the Erythrocytes: II: Velocity Images", TUFFC 2024.

May 2024 Mostafa Amin Naji. PhD student, DTU Health

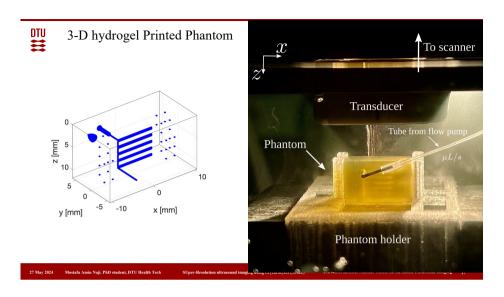
Uper-Resolution ultrasound imaging using Erythroc


024 International Communication & decreased Discovered Installed

Field II simulated phantom

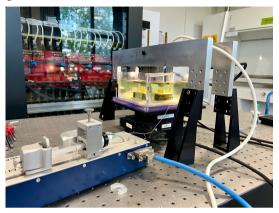
M. Amin-Naji et al., "Super Resolution Ultrasound Imaging Using the Erythrocytes: II: Velocity Images", TUFFC 2024.

Field II simulated phantom

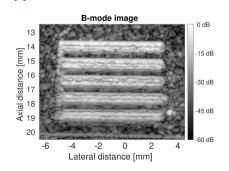

Actual tube distance (wall-to-wall)	Actual tube distance (center-to-center)	Estimated tube distance (center-to-center)	Distance error	Estimated peak velocity		Velocity underestimation		
125 μm (0.81λ)	150 μm (0.97λ)	146 µm	4 μm	+7.0 mm/s	-6.5 mm/s	30%	35%	
125 μm (0.81λ)	150 μm (0.97λ)	146 µm	4 μm	+6.9 mm/s	+6.7 mm/s	31%	33%	
75 μm (0.48λ)	100 μm (0.65λ)	103 μm	3 μm	+6.7 mm/s	-5.9 mm/s	31%	41%	
75 μm (0.48λ)	100 μm (0.65λ)	99 µm	1 μm	+6.9 mm/s	+6.6 mm/s	31%	34%	
45 μm (0.29λ)	70 μm (0.45λ)	70 μm	0 μm	+6.4 mm/s	-5.6 mm/s	36%	44%	
45 μm (0.29λ)	70 μm (0.45λ)	67 μm	3 μm	+6.0mm/s	+6.1 mm/s	39%	36%	
25 μm (0.16λ)	50 μm (0.32λ)	54 μm	4 μm	+5.3 mm/s	-4.7 mm/s	47%	53%	
25 μm (0.16λ)	50 μm (0.32λ)	50 μm	0 µm	+5.9 mm/s	+6.2 mm/s	39%	38%	

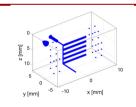
M. Amin-Naji et al., "Super Resolution Ultrasound Imaging Using the Erythrocytes: II: Velocity Images", TUFFC 2024.

27 May 2024 Mostafa Amin Naji. PhD student, DTU Health Tech


SUper-Resolution ultrasound imaging using Erythrocytes (

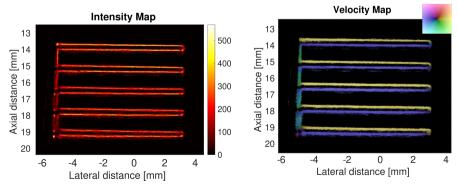
24 International Summer School on Advanced Ultrasound Imaging




3-D hydrogel Printed Phantom

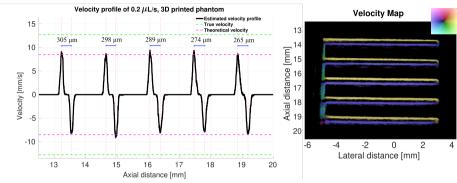
DTU

3-D hydrogel Printed Phantom

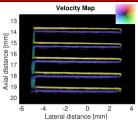


Actual tube distance (wall-to-wall)	Actual tube distance (center-to-center)	Estimated tube distance (center-to-center)
100 μm (0.64 λ)	300 μm	305 μm
90 μm (0.58 λ)	290 μm	298 μm
80 μm (0.51 λ)	280 μm	289 μm
70 μm (0.45 λ)	270 μm	274 μm
60 μm (0.38 λ)	260 μm	265 μm

M. Amin-Naji et al., "Super Resolution Ultrasound Imaging Using the Erythrocytes: II: Velocity Images", TUFFC 2024.


3-D hydrogel Printed Phantom

M. Amin-Naji et al., "Super Resolution Ultrasound Imaging Using the Erythrocytes: II: Velocity Images", TUFFC 2024.


DTU

3-D hydrogel Printed Phantom

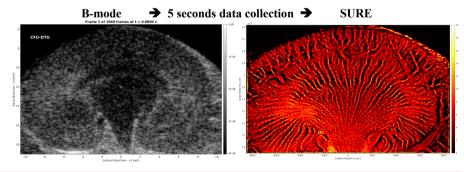
M. Amin-Naji et al., "Super Resolution Ultrasound Imaging Using the Erythrocytes: II: Velocity Images", TUFFC 2024.

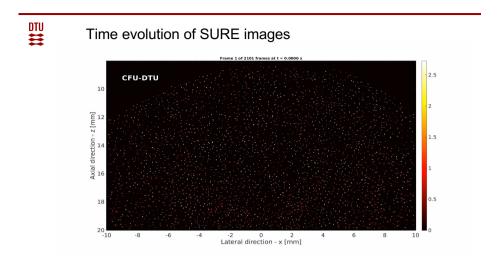
3-D hydrogel Printed Phantom

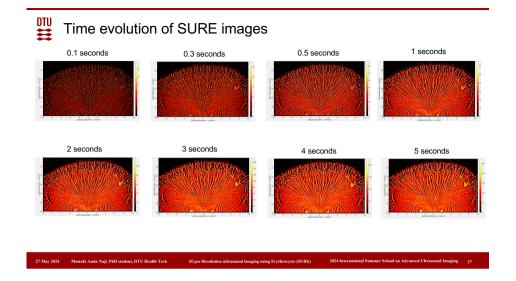


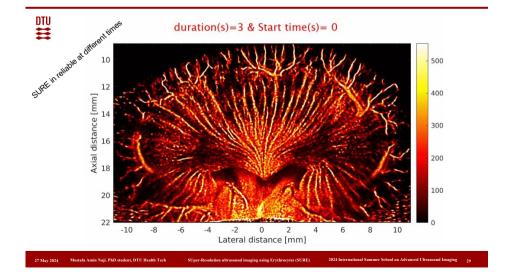
	Actual tube distance	Actual tube distance	Estimated tube distance	Distance	Estimated		Velocity	
ı	(wall-to-wall)	(center-to-center)	(center-to-center)	error	peak velocity		underestimation	
	125 μm (0.75λ)	150 μm (0.90λ)	146 μm	4 μm	+7.0 mm/s	-6.5 mm/s	30%	35%
	125 μm (0.75λ)	150 μm (0.90λ)	146 µm	4 μm	+6.9 mm/s	+6.7 mm/s	31%	33%
	75 μm (0.45λ)	100 μm (0.60λ)	103 μm	3 µm	+6.7 mm/s	-5.9 mm/s	31%	41%
	75 μm (0.45λ)	100 μm (0.60λ)	99 µm	1 μm	+6.9 mm/s	+6.6 mm/s	31%	34%
	45 μm (0.27λ)	70 μm (0.42λ)	70 μm	0 μm	+6.4 mm/s	-5.6 mm/s	36%	44%
	45 μm (0.27λ)	70 μm (0.42λ)	67 μm	3 µm	+6.0 mm/s	+6.1 mm/s	39%	36%
	25 μm (0.15λ)	50 μm (0.30λ)	54 μm	4 μm	+5.3 mm/s	-4.7 mm/s	47%	53%
ſ	25 μm (0.15λ)	50 μm (0.30λ)	50 μm	0 μm	+5.9 mm/s	+6.2 mm/s	39%	38%

M. Amin-Naji et al., "Super Resolution Ultrasound Imaging Using the Erythrocytes: II: Velocity Images", TUFFC 2024.

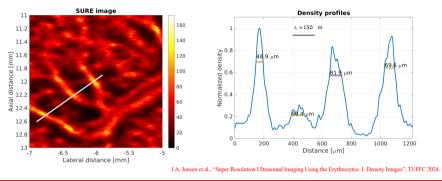

Sprague-Dawley rat kidney

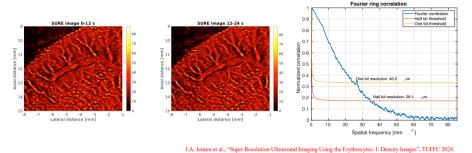



DTU



27 May 2024 Mostafa Amin Naji. PhD student, DTU Health Tech



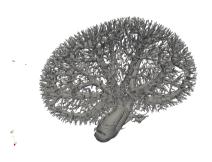


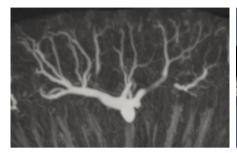
Resolution in vivo

Fourier Ring Correlation: Correlation between two independent images

Resolution of 29 m, wavelength 150 m

Micro-CT scans of Kidneys


- · Kidney excised, decapsulated, fixated in formaldehyde, and embedded in paraffin in custom-made cylinder-shaped holder.
- Zeiss XRadia 410 Versa CT scanner
- Isotropic voxel sizes 22.6 and 5 m
- 360°scan around vertical axis with 3,201 different projections
- · Scanned for 11 and 20 hours


Micro-CT of Sprague-Dawley rat kidney

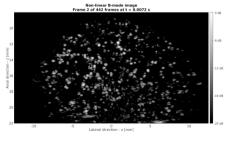
DTU

Micro-CT 26.5 μ m & 5 μ m 11 hours & 20 hours

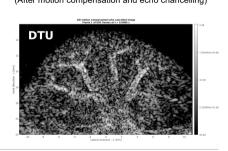
M. Amin-Naji et al., "Super Resolution Ultrasound Imaging Using the Erythrocytes: II: Velocity Images", TUFFC 2024.

SURE vs SRI vs micro-CT SURE intensity map (5 Sec) Micro-CT (10 h) SRI track density map (32 Sec) SRI velocity map (32 Sec) SRI MB density map (26 Sec) M. Amin-Naji et al., "Super Resolution Ultrasound Imaging Using the Erythrocytes: II: Velocity Images", TUFFC 2024.

SURE intensity map



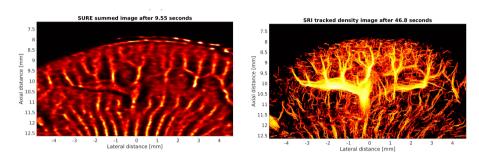
SURE & micro-CT overlay


DTU

Microbubbles (Non linear B mode)

Rat 82, same rat, same plan, same position of probe

Erythrocytes (After motion compensation and echo chancelling)



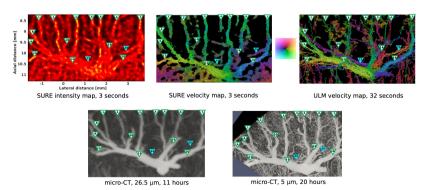
SUper-Resolution ultrasound imaging using Erythrocytes (SURE) 2024 International Summer School on Advanced Ultrasound Imaging 37

To May 2023 Mentals Amin Naji, PBD seelest, DTU Health Tech Najer-Reduction all resourced Unreasonal Imaging

DTU

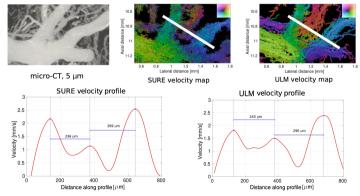
SURE vs ULM

J.A. Jensen et al., "Super Resolution Ultrasound Imaging Using the Erythrocytes: I: Density Images", TUFFC 2024.


ay 2024 Mostafa Amin Naji. PhD student, DTU Health Te

per-Resolution ultrasound imaging using Erythrocytes (SUF

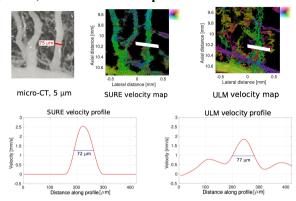
24 International Summer School on Advanced Ultracound Imagi


DTU

SURE, ULM, and micro-CT comparison

M. Amin-Naji et al., "Super Resolution Ultrasound Imaging Using the Erythrocytes: II: Velocity Images", TUFFC 2024.

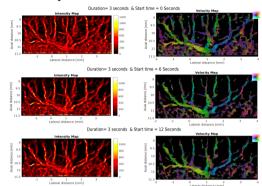
SURE, ULM, and micro-CT comparison


M. Amin-Naji et al., "Super Resolution Ultrasound Imaging Using the Erythrocytes: II: Velocity Images", TUFFC 2024.

27 May 2024 Mostafa Amin Naji. PhD student, DTU Health Tech

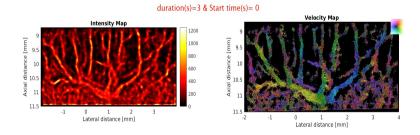
per-Resolution ultrasound imaging using Erythrocytes (SU

DTU


SURE, ULM, and micro-CT comparison

M. Amin-Naji et al., "Super Resolution Ultrasound Imaging Using the Erythrocytes: II: Velocity Images", TUFFC 2024.

DTU

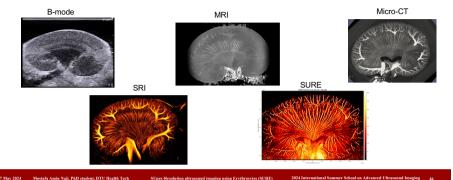

SURE consistency

M. Amin-Naji et al., "Super Resolution Ultrasound Imaging Using the Erythrocytes: II: Velocity Images", TUFFC 2024.

SURE consistency

M. Amin-Naji et al., "Super Resolution Ultrasound Imaging Using the Erythrocytes: II: Velocity Images", TUFFC 2024.

DTU


Human study

It will be included ...

Conclusion

- Using Erythrocytes in SURE instead of microbubbles in SRI
- · Don't have to inject anything
- Just 1-5 seconds is enough for SURE (not 10 minutes in SRI)

Do you want to ask questions?

Mostafa Amin Naji PhD student Center for Fast Ultrasound imaging (CFU) Technical University of Denmark (DTU)

