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CHAPTER

ONE

Introduction

These notes have been prepared for the international summer school on advanced ultrasound imaging in June 2023
at the Technical University of Denmark. The intended audience is Ph.D. students working in medical ultrasound. A
knowledge of general linear acoustics and signal processing is assumed.

The notes give a linear description of general ultrasound imaging through the use of spatial impulse responses. It is
shown in Chapter 2 how both the emitted and scattered fields for the pulsed and continuous wave case can be calculated
using this approach. Chapter 3 gives a brief overview of modern ultrasound imaging and how it is simulated using
spatial impulse responses. The first two chapters are based on the previous summer school course notes in [2]. Chapter
5 gives a brief description of both spectral and color flow imaging systems and their modeling and simulation along
with the more modern vector velocity systems. This is based on the book chapter in [3]. A description of synthetic
aperture imaging is given in Chapter 4 based on [4].

For the summer school it is assumed that the participant has read and understands the first two chapters on linear
imaging. Lectures will be given on the content of the other chapters.

Jørgen Arendt Jensen
May, 2023.

Center for fast Ultrasound Imaging: www.cfu.dtu.dk
DTU Health Technology, Build. 349,
Technical University of Denmark
DK-2800 Lyngby, Denmark
E-mail: jaje@dtu.dk
Web: home.healthtech.dtu.dk/jaj/
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CHAPTER

TWO

Description of ultrasound fields

This chapter gives a linear description of acoustic fields using spatial impulse responses. It is shown how both the
pulsed emitted and scattered fields can be accurately derived using spatial impulse responses, and how attenuation and
different boundary conditions can be incorporated. The chapter goes into some detail of deriving the different results
and explaining their consequence. Different examples for both simulated and measured fields are given. The chapter
is based on the papers [6], [7] and [8] and on the book [9].

2.1 Fields in linear acoustic systems

It is a well known fact in electrical engineering that a linear electrical system is fully characterized by its impulse re-
sponse as shown in Fig. 2.1. Applying a delta function to the input of the circuit and measuring its output characterizes
the system. The output y(t) to any kind of input signal x(t) is then given by

y(t) = h(t) ∗ x(t) =

∫ +∞

−∞
h(θ)x(t− θ)dθ, (2.1)

where h(t) is the impulse response of the linear system and ∗ denotes time convolution. The transfer function of the
system is given by the Fourier transform of the impulse response and characterizes the systems amplification of a
time-harmonic input signal.

The same approach can be taken to characterize a linear acoustic system. The basic set-up is shown in Fig. 2.2. The
acoustic radiator (transducer) on the left is mounted in a infinite rigid, baffle and its position is denoted by ~r2. It radiates
into a homogeneous medium with a constant speed of sound c and density ρ0 throughout the medium. The point
denoted by ~r1 is where the acoustic pressure from the transducer is measured by a small point hydrophone. A voltage
excitation of the transducer with a delta function will give rise to a pressure field that is measured by the hydrophone.
The measured response is the acoustic impulse response for this particular system with the given set-up. Moving the
transducer or the hydrophone to a new position will give a different response. Moving the hydrophone closer to the

Figure 2.1: Measurement of impulse response for a linear electric system.
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Figure 2.2: A linear acoustic system.

transducer surface will often increase the signal1, and moving it away from the center axis of the transducer will often
diminish it. Thus, the impulse response depends on the relative position of both the transmitter and receiver (~r2 − ~r1)
and hence it is called a spatial impulse response.

A perception of the sound field for a fixed time instance can be obtained by employing Huygens’ principle in which
every point on the radiating surface is the origin of an outgoing spherical wave. This is illustrated in Fig. 2.3. Each of
the outgoing spherical waves are given by

ps(~r1, t) = δ

(
t− |~r2 − ~r1|

c

)
= δ

(
t− |r|

c

)
(2.2)

where ~r1 indicates the point in space, ~r2 is the point on the transducer surface, and t is the time for the snapshot of the
spatial distribution of the pressure. The spatial impulse response is then found by observing the pressure waves at a
fixed position in space over time by having all the spherical waves pass the point of observation and summing them.
Being on the acoustical axis of the transducer gives a short response whereas an off-axis point yields a longer impulse
response as shown in Fig. 2.3.

2.2 Basic theory

In this section the exact expression for the spatial impulse response will more formally be derived. The basic setup is
shown in Fig. 2.4. The triangularly shaped aperture is placed in an infinite, rigid baffle on which the velocity normal
to the plane is zero, except at the aperture. The field point is denoted by ~r1 and the aperture by ~r2. The pressure field
generated by the aperture is then found by the Rayleigh integral [10]

p(~r1, t) =
ρ0

2π

∫
S

∂vn(~r2, t− |~r1−~r2|c )

∂t
| ~r1 − ~r2 |

dS, (2.3)

where vn is the velocity normal to the transducer surface. The integral is a statement of Huyghens’ principle that the
field is found by integrating the contributions from all the infinitesimally small area elements that make up the aperture.
This integral formulation assumes linearity and propagation in a homogeneous medium without attenuation. Further,
the radiating aperture is assumed flat, so no re-radiation from scattering and reflection takes place. Exchanging the
integration and the partial derivative, the integral can be written as

p(~r1, t) =
ρ0

2π

∂

∫
S

vn(~r2, t− |~r1−~r2|c )

| ~r1 − ~r2 |
dS

∂t
. (2.4)

1This is not always the case. It depends on the focusing of the transducer. Moving closer to the transducer but away from its focus will decrease
the signal.
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Figure 2.3: Illustration of Huygens’ principle for a fixed time instance. A spherical wave with a radius of |~r| = ct is
radiated from each point on the aperture.

Figure 2.4: Position of transducer, field point, and coordinate system.
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It is convenient to introduce the velocity potential ψ that satisfies the equations [11]

~v(~r, t) = −∇ψ(~r, t)

p(~r, t) = ρ0
∂ψ(~r, t)

∂t
. (2.5)

Then only a scalar quantity need to be calculated and all field quantities can be derived from it. The surface integral is
then equal to the velocity potential:

ψ(~r1, t) =

∫
S

vn(~r2, t− |~r1−~r2|c )

2π | ~r1 − ~r2 |
dS (2.6)

The excitation pulse can be separated from the transducer geometry by introducing a time convolution with a delta
function as

ψ(~r1, t) =

∫
S

∫
T

vn(~r2, t2)δ(t− t2 − |~r1−~r2|c )

2π | ~r1 − ~r2 |
dt2dS, (2.7)

where δ is the Dirac delta function.

Assume now that the surface velocity is uniform over the aperture making it independent of ~r2, then:

ψ(~r1, t) = vn(t) ∗
∫
S

δ(t− |~r1−~r2|c )

2π | ~r1 − ~r2 |
dS, (2.8)

where ∗ denotes convolution in time. The integral in this equation

h(~r1, t) =

∫
S

δ(t− |~r1−~r2|c )

2π | ~r1 − ~r2 |
dS (2.9)

is called the spatial impulse response and characterizes the three-dimensional extent of the field for a particular trans-
ducer geometry. Note that this is a function of the relative position between the aperture and the field.

Using the spatial impulse response the pressure is written as

p(~r1, t) = ρ0
∂vn(t)

∂t
∗ h(~r1, t) (2.10)

which equals the emitted pulsed pressure for any kind of surface vibration vn(t). The continuous wave field can be
found from the Fourier transform of (2.10). The received response for a collection of scatterers can also be found
from the spatial impulse response [12], [6]. This is derived in Section 2.6. Thus, the calculation of the spatial impulse
response makes it possible to find all ultrasound fields of interest.

2.2.1 Geometric considerations

The calculation of the spatial impulse response assumes linearity and any complex-shaped transducer can therefore
be divided into smaller apertures and the response can be found by adding the responses from the sub-apertures. The
integral is, as mentioned before, a statement of Huyghens’ principle of summing contributions from all areas of the
aperture.

An alternative interpretation is found by using the acoustic reciprocity theorem [13]. This states that: ”If in an
unchanging environment the locations of a small source and a small receiver are interchanged, the received signal will
remain the same.” Thus, the source and receiver can be interchanged. Emitting a spherical wave from the field point
and finding the wave’s intersection with the aperture also yields the spatial impulse response. The situation is depicted
in Fig. 2.5, where an outgoing spherical wave is emitted from the origin of the coordinate system. The dashed curves
indicate the circles from the projected spherical wave.

The calculation of the impulse response is then facilitated by projecting the field point onto the plane of the aperture.
The task is thereby reduced to a two-dimensional problem and the field point is given as a (x, y) coordinate set and a

6 Chapter 2. Description of ultrasound fields
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Figure 2.5: Emission of a spherical wave from the field point and its intersection of the aperture.
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Figure 2.6: Intersection of spherical waves from the field point by the aperture, when the field point is projected onto
the plane of the aperture.
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Figure 2.7: Definition of distances and angles in the aperture plan for evaluating the Rayleigh integral.

height z above the plane. The three-dimensional spherical waves are then reduced to circles in the x − y plane with
the origin at the position of the projected field point as shown in Fig. 2.6.

The spatial impulse response is, thus, determined by the relative length of the part of the arc that intersects the aperture.
Thereby it is the crossing of the projected spherical waves with the edges of the aperture that determines the spatial
impulse responses. This fact is used for deriving equations for the spatial impulse responses in the next section.

2.3 Calculation of spatial impulse responses

The spatial impulse response is found from the Rayleigh integral derived earlier

h(~r1, t) =

∫
S

δ(t− |~r1−~r2|c )

2π | ~r1 − ~r2 |
dS (2.11)

The task is to project the field point onto the plane coinciding with the aperture, and then find the intersection of the
projected spherical wave (the circle) with the active aperture as shown in Fig. 2.6.

Rewriting the integral into polar coordinates gives:

h(~r1, t) =

∫ Θ2

Θ1

∫ d2

d1

δ(t− R
c )

2πR
r dr dΘ (2.12)

where r is the radius of the projected circle and R is the distance from the field point to the aperture given by R2 =
r2 + z2

p . Here zp is the field point height above the x − y plane of the aperture. The projected distances d1, d2 are
determined by the aperture and are the distance closest to and furthest away from the aperture, and Θ1,Θ2 are the
corresponding angles for a given time (see Fig. 2.7).

Introducing the substitution 2RdR = 2rdr gives

h(~r1, t) =
1

2π

∫ Θ2

Θ1

∫ R2

R1

δ(t− R

c
) dR dΘ (2.13)
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The variables R1 and R2 denote the edges closest to and furthest away from the field point. Finally using the substi-
tution t′ = R/c gives

h(~r1, t) =
c

2π

∫ Θ2

Θ1

∫ t2

t1

δ(t− t′)dt′dΘ (2.14)

For a given time instance the contribution along the arc is constant and the integral gives

h(~r1, t) =
Θ2 −Θ1

2π
c (2.15)

when assuming the circle arc is only intersected once by the aperture. The angles Θ1 and Θ2 are determined by
the intersection of the aperture and the projected spherical wave, and the spatial impulse response is, thus, solely
determined by these intersections, when no apodization of the aperture is used. The response can therefore be evaluated
by keeping track of the intersections as a function of time.

2.3.1 A simple calculation procedure

From the derivation in the last section it can be seen that the spatial impulse response in general can be expressed as

h(~r1, t) =
c

2π

N(t)∑
i=1

[
Θ

(i)
2 (t)−Θ

(i)
1 (t)

]
(2.16)

whereN(t) is the number of arc segments that crosses the boundary of the aperture for a given time and Θ
(i)
2 (t),Θ

(i)
1 (t)

are the associated angles of the arc. This was also noted by Stepanishen [14]. The calculation can, thus, be formulated
as finding the angles of the aperture edge’s intersections with the projected spherical wave, sorting the angles, and
then summing the arc angles that belong to the aperture. Finding the intersections can be done from the description
of the edges of the aperture. A triangle can be described by three lines, a rectangle by four, and the intersections are
then found from the intersections of the circle with the lines. This makes it possible to devise a general procedure for
calculating spatial impulse responses for any flat, bounded aperture, since the task is just to find the intersections of
the boundary with the circle.

The spatial impulse response is calculated from the time the aperture first is intersected by a spherical wave to the time
for the intersection furthest away. The intersections are found for every time instance and the corresponding angles
are sorted. The angles lie in the interval from 0 to 2π. It is then found whether the arc between two angles belongs
to the aperture, and the angle difference is added to the sum, if the arc segment is inside the aperture. This yields the
spatial impulse response according to Eq. (2.16). The approach can be described by the flow chart shown in Fig. 2.8.

The only part of the algorithm specific to the aperture is the determination of the intersections and whether the point
is inside the aperture. Section 2.3.2 shows how this is done for polygons, Section 2.3.3 for circles, and Section 2.3.6
for higher-order parametric boundaries.

All the intersections need not be found for all times. New intersections are only introduced, when a new edge or corner
of the aperture is met. Between times when two such corners or edges are encountered the number of intersections
remains constant and only intersections, which belong to points inside the aperture need to be found. Note that an
aperture edge gives rise to a discontinuity in the spatial impulse response. Also testing whether the point is inside the
aperture is often superfluous, since this only needs to be found once after each discontinuity in the response. These two
observations can significantly reduce the number of calculations, since only the intersections affecting the response
are found.

The procedure first finds the number of discontinuities. Then only intersection influencing the response are calculated
between two discontinuity points. This can potentially make the approach faster than the traditional approach, where
the response from a number of different rectangles or triangles must be calculated.

2.3. Calculation of spatial impulse responses 9



Figure 2.8: Flow chart for calculating the spatial impulse response.
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Figure 2.9: Definition of bounding lines for polygon transducer. The arrows indicate the half-planes for the active
aperture.

2.3.2 Solution for polygons

The boundary of any polygon can be defined by a set of bounding lines as shown in Fig. 2.9.

The active aperture is then defined as lying on one side of the line as indicated by the arrows, and a point on the
aperture must be placed correctly in relation to all lines. The test whether a point is on the aperture is thus to go
through all lines and test whether the point lies in the active half space for the line, and stop if it is not. The point is
inside the aperture, if it passes the test for all the lines.

The intersections are found from the individual intersections between the projected circle and the lines. They are
determined from the equations for the projected spherical wave and the line:

r2 = (x− x0)2 + (y − y0)2

y = αx+ y1 (2.17)
r2 = (ct)2 − z2

p

Here (x0, y0) is the center of the circle, α the slope of the line, and y1 its intersect with the y-axis. The intersections
are given from the solutions to:

0 = (1 + α2)x2 + (2αy1 − 2x0 − 2y0α)x+ (y2
0 + y2

1 + x2
0 − 2y0y1 − r2)

= Ax2 +Bx+ C (2.18)
D = B2 − 4AC

The angles are

Θ = arctan

(
y − y0

x− x0

)
(2.19)

Intersections between the line and the circle are only found if D > 0. A determinant D < 0 indicates that the circle
did not intersect the line. If the line has infinite slope, the solution is found from the equation:

x = x1

0 = y2 − 2y0y + y2
0 + (x1 − x0)2 − r2 (2.20)

= A∞y
2 +B∞y + C∞

in which A∞, B∞, C∞ replace A,B,C, respectively, and the solutions are found for y rather than x. Here x1 is the
line’s intersection with the x-axis.

The times for discontinuities in the spatial impulse response are given by the intersections of the lines that define the
aperture’s edges and by the minimum distance from the projected field point to the lines. The minimum distance is

2.3. Calculation of spatial impulse responses 11



found from a line passing through the field point that is orthogonal to the bounding line. The intersection between the
orthogonal line and the bounding line is:

x =
αyp + xp − αy1

α2 + 1
(2.21)

y = αx+ y1

where (xp, yp, zp) is the position of the field point. For an infinite slope line the solution is x = x1 and y = yp. The
corresponding time is:

ti =

√
(x− xp)2 + (y − yp)2 + z2

p

c
(2.22)

The intersections of the lines are also found, and the corresponding times are calculated by (2.22) and sorted in
ascending order. They indicate the start and end time for the response and the time points for discontinuities in the
response.

2.3.3 Solution for circular surfaces

The other basic shape for a transducer apart from rectangular shapes is the flat, round surface used for single element
piston transducers and annular arrays. For these the intersections are determined by two circles as depicted in Fig. 2.10.

Here O1 is the center of the aperture with radius ra and the projected spherical wave is centered at O2 with radius
rb(t) =

√
(ct)2 − z2

p . The length ha(t) is given by [15, page 66]

ha(t) =
2
√
p(t)(p(t)− a)(p(t)− ra)(p(t)− rb(t))

a
(2.23)

a = ||O1 −O2||

p(t) =
a+ ra + rb(t)

2

In a coordinate system centered at O1 and an x-axis in the O1 −O2 direction, the intersections are at

y = ha(t) (2.24)

l = ±
√
r2
b (t)− h2

a(t)

The sign for l depends on the position of the intersections. A negative sign is used if the intersections are for negative
values of x, and positive sign is used for positive x positions.

When the field point is outside the active aperture the spatial impulse response is

h(~r1, t) =
|Θ2 −Θ1|

2π
c =

c

π
arctan

(
ha(t)

l

)
(2.25)

Θ2 = arctan

(
ha(t)

l

)
= −Θ1

It must be noted that a proper four-quadrant arc-tan should be used to give the correct response. An alternative formula
is [16, page 19]

h(~r1, t) =
c

2π
arcsin

(
2
√
p(t)(p(t)− a)(p(t)− ra)(p(t)− rb(t))

r2
b (t)

)
(2.26)

=
c

2π
arcsin

(
aha(t)

r2
b (t)

)
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Figure 2.10: Geometry for determining intersections between circles. The top graph shows the geometry when the
field point denoted by O2 is outside the aperture, and the bottom graph when it is inside.
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The start time ts for the response is found from

ra + rb(t) = ||O1 −O2||

ts =

√
r2
b (t) + z2

p

c
=

√
(||O1 −O2|| − ra)2 + z2

p

c
(2.27)

and the response ends at the time te when

rb(t) = ra + ||O1 −O2||

te =

√
r2
b (t) + z2

p

c
=

√
(||O1 −O2||+ ra)2 + z2

p

c
(2.28)

When the field point is inside the aperture, the response is

h(~r1, t) = c for
zp
c
≤ t ≤

√
(ra − ||O1 −O2||)2 + z2

p

c
(2.29)

thereafter the arc lying outside the aperture should be subtracted, so that

h(~r1, t) =
2π − |Θ2 −Θ1|

2π
c (2.30)

The response ends when

rb(t) = ra + ||O1 −O2||

te =

√
(||O1 −O2||+ ra)2 + z2

p

c
(2.31)

The determination of which part of the arc that subtracts or adds to the response is determined by what the active
aperture is. One ring in an annular array can be defined as consisting of an active aperture outside a circle combined
with an active aperture inside a circle for defining the inner and outer rim of the aperture. A circular aperture can also
be combined with a line for defining the active area of a split aperture used for continuous wave probing.

2.3.4 Solution for a circular concave surface

For reference the expression for a concave transducer, which is a type often used in medical ultrasonics, is given. A
derivation of the solution can be found in [17] and [18].

The spatial impulse response is [17]:

hc(~r1, t) =



Region I Region II
z < 0 z > 0

0 ct < r0 r0 < ct ct < r1
cR
r r0 < ct < r1 r2 < ct < r0 −
cR
r

1
π arccos η(t)

σ(t) r1 < ct < r2 r1 < ct < r2 r1 < ct < r2

0 r2 < ct ct < r1 r2 < ct

(2.32)

where:

η(t) = R

{
1− d/R

sin Θ
+

1

tan Θ

(
R2 + r2 − c2t2

2rR

)}

σ(t) = R

√
1−

(
R2 + r2 − c2t2

2rR

)2

(2.33)

r = |~r1 |.

The variables are defined in Fig. 2.11.

14 Chapter 2. Description of ultrasound fields



x

z

r
1

d

r
2

r
0

r
1

R

Θ

Aperture 

Field point

Region I

Region II

x

z

r
1

d
r
2

r
0

r
1

R

Θ

Aperture 

Field point

Figure 2.11: Definition of variables for spatial impulse response of concave transducer.
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2.3.5 Solution for other surfaces

Analytical solutions for spatial impulse response have been derived for a number of different geometries by various
authors. The response from a flat rectangle can be found in [19, 20], and for a flat triangle in [21]).

2.3.6 Solution for parametric surfaces

For ellipses or other higher order parametric surfaces it is in general not easy to find analytic solutions for the spatial
impulse response. The boundary method described above can, however, be used for providing a simple solution to the
problem, since the intersections between the projected spherical wave and the edge of the aperture uniquely determine
the spatial impulse response. It is therefore possible to use root finding for a set of (non-linear) equations for finding
these intersections. The problem is to find when both the spherical wave and the aperture have crossing contours in
the plane of the aperture, i.e., when

(ct)2 − z2
p − (x− xp)2 − (y − yp)2 = 0 (2.34)

S(x, y) = 0

in which S(x, y) = 0 defines the boundary of the aperture. The problem of numerically finding these roots is in
general not easy, if a good initial guess on the position of the intersections is not found [22, pages 286–289]. Good
initial values are however found here, since the intersections must lie on the projected circle and the intersections only
move slightly from time point to time point. An efficient Newton-Raphson algorithm can therefore be devised for
finding the intersections, and the procedure detailed here can be used to find the spatial impulse response for any flat
transducer geometry with an arbitrary apodization and both hard and soft baffle mounting.

2.4 Apodization and soft baffle

Often ultrasound transducers do not vibrate as a piston over the aperture. This can be due to the clamping of the active
surface at its edges, or intentionally to reduce side-lobes in the field. Applying for example a Gaussian apodization
will significantly lower side lobes and generate a field with a more uniform point spread function as a function of
depth. Apodization is introduced in (2.12) by writing [23]

h(~r1, t) =

∫ Θ2

Θ1

∫ d2

d1

ap(r,Θ)
δ(t− R

c )

2πR
r dr dΘ (2.35)

in which ap(r,Θ) is the apodization over the aperture. Using the same substitutions as before yields

h(~r1, t) =
c

2π

∫ Θ2

Θ1

∫ t2

t1

ap1(t′,Θ)δ(t− t′) dt′ dΘ (2.36)

where ap1(t′,Θ) = ap(
√

(ct′)2 − z2
p,Θ). The inner integral is a convolution of the apodization function with a

δ-function and readily yields

h(~r1, t) =
c

2π

∫ Θ2

Θ1

ap1(t,Θ) dΘ (2.37)

as noted by several authors [23, 24, 25]. The response for a given time instance can, thus, be found by integrating the
apodization function along the fixed arc with a radius of r =

√
(ct)2 − z2

p for the angles for the active aperture. Any
apodization function can therefore be incorporated into the calculation by employing numerical integration.

Often the assumption of an infinite rigid baffle for the transducer mounting is not appropriate and another form of the
Rayleigh integral must be used. For a soft baffle, in which the pressure on the baffle surface is zero, the Rayleigh-
Sommerfeld integral is used. This is [26, pages 46–50]

hs(~r1, t) =

∫
S

δ(t− |~r1−~r2|c )

2π | ~r1 − ~r2 |
cosϕ dS (2.38)
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Figure 2.12: Definition of angle used for a soft baffle.

assuming that |~r1−~r2| � λ. Here cosϕ is the angle between the line through the field point orthogonal to the aperture
plane and the radius of the spherical wave as shown in Fig. 2.12.

The angle ϕ is constant for a given radius of the projected spherical wave and thus for a given time. It is given by

cosϕ =
zp
R

=
zp
ct

(2.39)

Using the substitutions from Section 2.2, the Rayleigh-Sommerfeld integral can then be rewritten as

hs(~r1, t) =
zp
2π
c(Θ2 −Θ1)

∫ t2

t1

δ(t− t′)
ct′

dt′ (2.40)

Using the property of the δ-function that ∫ +∞

−∞
g(t′)δ(t− t′) dt′ = g(t) (2.41)

then gives

hs(~r1, t) =
zp
ct

Θ2 −Θ1

2π
c =

zp
ct
h(~r1, t). (2.42)

The spatial impulse response can, thus, be found from the spatial impulse response for the rigid baffle case by multi-
plying with zp/(ct).

2.5 Examples of spatial impulse responses

The first example shows the spatial impulse responses from a 3× 5 mm rectangle for different spatial positions 5 mm
from the front face of the transducer. The responses are found from the center of the rectangle (y = 0) and out in steps
of 2 mm in the x direction to 6 mm away from the center of the rectangle. A schematic diagram of the situation is
shown in Fig. 2.13 for the on-axis response. The impulse response is zero before the first spherical wave reaches the
aperture. Then the response stays constant at a value of c. The first edge of the aperture is met, and the response drops
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Figure 2.14: Spatial impulse response from a rectangular aperture of 4× 5 mm at for different lateral positions
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of. The decrease with time in increased when the next edge of the aperture is reached and the response becomes zero
when the projected spherical waves all are outside the area of the aperture.

A plot of the results for the different lateral field positions is shown in Fig. 2.14. It can be seen how the spatial impulse
response changes as a function of relative position to the aperture.

The second example shows the response from a circular, flat transducer. Two different cases are shown in Fig. 2.15.
The top graph shows the traditional spatial impulse response when no apodization is used, so that the aperture vibrates
as a piston. The field is calculated 10 mm from the front face of the transducer starting at the center axis of the aperture.
Twenty-one responses for lateral distance of 0 to 20 mm off axis are then shown. The same calculation is repeated in
the bottom graph, when a Gaussian apodization has been imposed on the aperture. The vibration amplitude is a factor
of 1/ exp(4) less at the edges of the aperture than at the center. It is seen how the apodization reduces some of the
sharp discontinuities in the spatial impulse response, which can reduce the sidelobes of the field.

2.6 Calculation of the scattered signal

In medical ultrasound, a pulsed field is emitted into the body and is scattered and reflected by density and propagation
velocity perturbations. The scattered field then propagates back through the tissue and is received by the transducer.
The field is converted to a voltage signal and used for the display of the ultrasound image. A full description of a
typical imaging system, using the concept of spatial impulse response, is the purpose of the section.

The received signal can be found by solving an appropriate wave equation. This has been done in a number of papers
(e.g. [27], [28]). Gore and Leeman [27] considered a wave equation where the scattering term was a function of
the adiabatic compressibility and the density. The transducer was modeled by an axial and lateral pulse that were
separable. Fatemi and Kak [28] used a wave equation where scattering originated only from velocity fluctuations, and
the transducer was restricted to be circularly symmetric and unfocused (flat).

The scattering term for the wave equation used here is a function of density and propagation velocity perturbations,
and the wave equation is equivalent to the one used by Gore and Leeman [27]. No restrictions are enforced on the
transducer geometry or its excitation, and analytic expressions for a number of geometries can be incorporated into
the model.

The model includes attenuation due to propagation and scattering, but not the dispersive attenuation observed for
propagation in tissue. This can, however, be incorporated into the model as indicated in Section 2.6.6.

The derivation is organized as follows. The following section derives the wave equation and describes the different
linearity assumptions made. Section 2.6.2 calculates the scattered field and section 2.6.3 introduces the spatial impulse
response model for the incident field. Section 2.6.4 combines the wave equation solution and the transducer model to
give the final equation for the received pressure field. To indicate the precision of the model, a single example of a
predicted pressure field compared to measured field is given in Section 2.6.5.

2.6.1 Derivation of the wave equation

This section derives the wave equation. The section has been included in order to explain in detail the different
linearity assumptions and approximations made to obtain a solvable wave equation. The derivation closely follows
that developed by Chernov (1960).

The first approximation states that the instantaneous acoustic pressure and density can be written

Pins(~r, t) = P + p1(~r, t) (2.43)
ρins(~r, t) = ρ(~r) + ρ1(~r, t) (2.44)

in which P is the mean pressure of the medium and ρ is the density of the undisturbed medium. Here p1 is the pressure
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Figure 2.15: Spatial impulse response from a circular aperture. Graphs are shown without apodization of the aperture
(top) and with a Gaussian apodization function (bottom). The radius of the aperture is 5 mm and the field is calculated
10 mm from the transducer surface.
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variation caused by the ultrasound wave and is considered small compared to P and ρ1 is the density change caused
by the wave. Both p1 and ρ1 are small quantities of first order.

Our second assumption is that no heat conduction or conversion of ultrasound to thermal energy take place. Thus, the
entropy is constant for the process, so that the acoustic pressure and density satisfy the adiabatic equation [29]:

dPins
dt

= c2
dρins
dt

(2.45)

The equation contains total derivatives, as the relation is satisfied for a given particle of the tissue rather than at a
given point in space. This is the Lagrange description of the motion [11]. For our purpose the Euler description is
more appropriate. Here the coordinate system is fixed in space and the equation describes the properties of whatever
particle of fluid there is at a given point at a given time. Converting to an Eulerian description results in the following
constitutive equation [29], [11]:

1

c2
∂p1

∂t
=
∂ρ1

∂t
+ ~u · ∇ρ (2.46)

using that P and ρ do not depend on time and that ρ1 is small compared to ρ. Here u is the particle velocity, ∇ is the
gradient operator, and · symbolizes the scalar product.

The pressure, density, and particle velocity must also satisfy the hydrodynamic equations [29]:

ρins
d~u

dt
= −∇Pins (2.47)

∂ρins
∂t

= −∇ · (ρins~u) (2.48)

which are the dynamic equation and the equation of continuity. Using (2.43) and (2.44) and discarding higher order
terms we can write

ρ
∂~u

∂t
= −∇p1 (2.49)

∂ρ1

∂t
= −∇ · (ρ~u) (2.50)

Differentiating (2.50) with respect to t and inserting (2.49) gives

∂2ρ1

∂2t
= −∇ · (ρ∂~u

∂t
) = −∇ · (−∇p1) = ∇2p1 (2.51)

Differentiating (2.46) with respect to t
1

c2
∂2p1

∂2t
=
∂2ρ1

∂2t
+
∂~u

∂t
· ∇ρ (2.52)

and inserting (2.51) and (2.49) leads to

∇2p1 −
1

c2
∂2p1

∂2t
=

1

ρ
∇ρ · ∇p1 (2.53)

Assuming that the propagation velocity and the density only vary slightly from their mean values yields

ρ(~r) = ρ0 + ∆ρ(~r)

c(~r) = c0 + ∆c(~r) (2.54)

where ρ0 � ∆ρ and c0 � ∆c.

∇2p1 −
1

(c0 + ∆c)2

∂2p1

∂2t
=

1

(ρ0 + ∆ρ)
∇(ρ0 + ∆ρ) · ∇p1 (2.55)
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Figure 2.16: Coordinate system for calculating the scattered field

Ignoring small quantities of second order and using the approximation (∆� 1):

1

1 + ∆
≈ 1−∆ (2.56)

gives:

∇2p1 − (
1

c02
− 2∆c

c03
)
∂2p1

∂2t
=

(
1

ρ0
∇(∆ρ)− ∆ρ

ρ0
2
∇(∆ρ)

)
· ∇p1 (2.57)

Neglecting the second order term (∆ρ/ρ0
2)∇(∆ρ) · ∇p1 yields the wave equation:

∇2p1 −
1

c20

∂2p1

∂t2
= −2∆c

c30

∂2p1

∂t2
+

1

ρ0
∇(∆ρ) · ∇p1 (2.58)

The two terms on the right side of the equation are the scattering terms which vanish for a homogeneous medium. The
wave equation was derived by Chernov [29]. It has also been considered in Gore & Leeman [27] and Morse & Ingard
[11] in a slightly different form, where the scattering terms were a function of the adiabatic compressibility κ and the
density.

2.6.2 Calculation of the scattered field

Having derived a suitable wave equation, we now calculate the scattered field from a small inhomogeneity embedded
in a homogeneous surrounding. The scene is depicted in Fig. 2.16. The inhomogeneity is identified by ~r1 and enclosed
in the volume V ′. The scattered field is calculated at the point indicated by ~r2 by integrating all the spherical waves
emanating from the scattering region V ′ using the time dependent Green’s function for unbounded space. Thus, the
scattered field is [11], [27]:

ps(~r2, t) =

∫
V ′

∫
T

[
1

ρ0
∇(∆ρ(~r1)) · ∇p1(~r1, t1)

− 2∆c(~r1)

c30

∂2p1(~r1, t1)

∂t2

]
G(~r1, t1 | ~r2, t)dt1 d

3~r1 (2.59)

where G is the free space Green’s function:

G(~r1, t1 | ~r2, t) =
δ(t− t1 − |~r2−~r1|c0

)

4π | ~r2 − ~r1 |
(2.60)
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d3~r1 means integrating w.r.t. ~r1 over the volume V ′, and T denotes integration over time.

We denote by

Fop =
1

ρ0
∇(∆ρ(~r1)) · ∇ − 2∆c(~r1)

c30

∂2

∂t2
(2.61)

the scattering operator.

The pressure field inside the scattering region is:

p1(~r, t) = pi(~r, t) + ps(~r, t) (2.62)

where pi is the incident pressure field. As can be seen, the integral can not be solved directly. To solve it we apply
the Born-Neumann expansion [30]. If Gi symbolizes the integral operator representing Green’s function and the
integration and Fop the scattering operator, then the first order Born approximation can be written:

ps1(~r2, t) = GiFop pi(~r1, t1) (2.63)

Here ps has been set to zero in (2.62). Inserting ps1 in (2.62) and then in (2.59) we arrive at

ps2(~r2, t) = GiFop [pi(~r1, t1) +GiFop pi(~r1, t1)]

= GiFop pi(~r1, t1) + [GiFop]
2
pi(~r1, t1) (2.64)

It is emphasized here that Gi indicates an integral over ~r1 and t1, and not the pressure at point ~r1 and time t1 but over
the volume of V ′ and time T indicated by ~r1 and t1.

The general expression for the scattered field then is:

ps(~r2, t) = GiFop pi(~r1, t1) + (2.65)

[GiFop]
2
pi(~r1, t1) +

[GiFop]
3
pi(~r1, t1) +

[GiFop]
4
pi(~r1, t1) + · · ·

Terms involving [GiFop]
N
pi(~r1, t1), where N > 1, describe multiple scattering of order N . Usually the scattering

from small obstacles is considered weak so higher order terms can be neglected. Thus, a useful approximation is to
employ only the first term in the expansion. This corresponds to the first order Born-approximation.

Using this (2.59) can be approximated by (note the replacement of p1(~r1, t1) with pi(~r1, t1)):

ps(~r2, t) ≈
∫
V ′

∫
T

[
1

ρ0
∇(∆ρ(~r1)) · ∇pi(~r1, t1)

− 2∆c(~r1)

c30

∂2pi(~r1, t1)

∂t2

]
G(~r1, t1 | ~r2, t)dt1 d

3~r1 (2.66)

So in order to calculate the scattered field, the incident field for the homogeneous medium must be calculated.

2.6.3 Calculation of the incident field

The incident field is generated by the ultrasound transducer assuming no other sources exist in the tissue. The field
is conveniently calculated by employing the velocity potential ψ(~r, t), and enforcing appropriate boundary conditions
[31], [32]. The velocity potential satisfies the following wave equation for the homogeneous medium:

∇2ψ − 1

c02

∂2ψ

∂2t
= 0 (2.67)
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Figure 2.17: Coordinate system for calculating the incident field.

and the pressure is calculated from:

p(~r, t) = ρ0
∂ψ(~r, t)

∂t
(2.68)

The coordinate system shown in Fig. 2.17 is used in the calculation. The particle velocity normal to the transducer
surface is denoted by v(~r3 + ~r4, t), where ~r3 identifies the position of the transducer and ~r4 a point on the transducer
surface relative to ~r3.

The solution to the homogeneous wave equation is [32]:

ψ(~r1 + ~r3, t) =

∫
S

∫
T

v(~r3 + ~r4, t3)g(~r1, t | ~r3 + ~r4, t3)dt3 d
2~r4 (2.69)

when the transducer is mounted in a rigid infinite planar baffle. S denotes the transducer surface.

g is the Green’s function for a bounded medium and is

g(~r1, t | ~r3 + ~r4, t3) =
δ(t− t3 − |~r1−~r3−~r4|c0

)

2π | ~r1 − ~r3 − ~r4 |
(2.70)

| ~r1 − ~r3 − ~r4 | is the distance from S to the point where the field is calculated and c0 the mean propagation velocity.
The field is calculated under the assumption of radiation into an isotropic, homogeneous, non-dissipative medium.

If a slightly curved transducer is used, an additional term is introduced as shown in Morse & Feshbach [33]. This
term is called the second order diffraction term in Penttinen & Luukkala [18]. It can be shown to vanish for a planar
transducer, and as long as the transducer is only slightly curved and large compared to the wavelength of the ultrasound,
the resulting expression is a good approximation to the pressure field [18].

If the particle velocity is assumed to be uniform over the surface of the transducer, (2.69) can be reduced to [34]:

ψ(~r1, ~r3, t) =

∫
T

v(t3)

∫
S

g(~r1, t | ~r3 + ~r4, t3)d2~r4 dt3 (2.71)
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Figure 2.18: Coordinate system for calculating the received signal.

This is the spatial impulse response previously derived, and the sound pressure for the incident field then is:

p(~r1, ~r3, t) = ρ0
∂ψ(~r1, ~r3, t)

∂t
= ρ0v(t) ?

t

∂h(~r1, ~r3, t)

∂t
(2.72)

or

p(~r1, ~r3, t) = ρ0
∂v(t)

∂t
?
t
h(~r1, ~r3, t) (2.73)

2.6.4 Calculation of the received signal

The received signal is the scattered pressure field integrated over the transducer surface, convolved with the electro-
mechanical impulse response, Em(t), of the transducer. To calculate this we introduce the coordinate system shown
in Fig. 2.18. ~r6 + ~r5 indicates a receiving element on the surface of the transducer that is located at ~r5. The received
signal is:

pr(~r5, t) = Em(t) ?
t

∫
S

ps(~r6 + ~r5, t)d
2~r6 (2.74)

The scattered field is:

ps(~r6 + ~r5, t) = 1
2

∫
V ′

∫
T

Fop [pi(~r1, t1)]
δ(t− t1 − |~r6+~r5−~r1|

c0
)

2π | ~r6 + ~r5 − ~r1 |
dt1 d

3~r1 (2.75)

Combining this with (2.74) and comparing with (2.9) we see that pr includes Green’s function for bounded space
integrated over the transducer surface, which is equal to the spatial impulse response. Inserting the expression for pi
and performing the integration over the transducer surface and over time, results in:

pr(~r5, t) = Em(t) ?
t

1
2

∫
V ′
Fop

[
ρ0
∂v(t)

∂t
?
t
h(~r1, ~r3, t)

]
?
t
h(~r5, ~r1, t)d

3~r1 (2.76)

If the position of the transmitting and the receiving transducer is the same (~r3 = ~r5), then a simple rearrangement of
(2.76) yields:

pr(~r5, t) =
ρ0

2
Em(t) ?

t

∂v(t)

∂t
?
t

∫
V ′
Fop [hpe(~r1, ~r5, t)] d

3~r1 (2.77)
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where
hpe(~r1, ~r5, t) = h(~r1, ~r5, t) ?

t
h(~r5, ~r1, t) (2.78)

is the pulse-echo spatial impulse response.

The calculated signal is the response measured for one given position of the transducer. For a B-mode scan picture
a number of scan-lines is measured and combined to a picture. To analyze this situation, the last factor in (2.77) is
explicitly written out ∫

V ′

[
1

ρ0
∇(∆ρ(~r1)) · ∇hpe(~r1, ~r5, t)−

2∆c(~r1)

c30

∂2hpe(~r1, ~r5, t)

∂t2

]
d3~r1 (2.79)

From section 2.6.3 it is know that Hpe is a function of the distance between ~r1 and ~r5, while ∆ρ and ∆c only are
functions of ~r1. So when ~r5 is varied over the volume of interest, the resulting image is a spatial non-stationary
convolution between ∆ρ, ∆c and a modified form of the pulse-echo spatial impulse response.

If we assume that the pulse-echo spatial impulse is slowly varying so that the spatial frequency content is constant
over a finite volume, then (2.79) can be rewritten∫

V ′

[
1

ρ0
∆ρ(~r1)∇2hpe(~r1, ~r5, t)−

2∆c(~r1)

c30

∂2hpe(~r1, ~r5, t)

∂t2

]
d3~r1 (2.80)

hpe is a function of the distance between the transducer and the scatterer or equivalently of the corresponding time
given by

t =
| ~r1 − ~r5 |

c0
(2.81)

The Laplace operator is the second derivative w.r.t. the distance, which can be approximated with the second derivative
w.r.t. time. So

∇2hpe(~r1, ~r5, t) =
1

c20

∂2hpe(~r1, ~r5, t)

∂t2
(2.82)

assuming only small deviations from the mean propagation velocity.

Using these approximations, (2.77) can be rewritten:

pr(~r5, t) =
ρ0

2c20
Em(t) ?

t

∂v3(t)

∂t3
?
t

∫
V ′

[
∆ρ(~r1)

ρ0
− 2∆c(~r1)

c0

]
hpe(~r1, ~r5, t)d

3~r1 (2.83)

Symbolically this is written
pr(~r5, t) = vpe(t) ?

t
fm(~r1) ?

r
hpe(~r1, ~r5, t) (2.84)

?
r denotes spatial convolution. vpe is the pulse-echo wavelet which includes the transducer excitation and the electro-

mechanical impulse response during emission and reception of the pulse. fm accounts for the inhomogeneities in the
tissue due to density and propagation velocity perturbations which give rise to the scattered signal. hpe is the modified
pulse-echo spatial impulse response that relates the transducer geometry to the spatial extent of the scattered field.
Explicitly written out these terms are:

vpe(t) =
ρ0

2c20
Em(t) ?

t

∂v3(t)

∂t3
(2.85)

fm(~r1) =
∆ρ(~r1)

ρ0
− 2∆c(~r1)

c0
(2.86)

hpe(~r1, ~r5, t) = h(~r1, ~r5, t) ?
t
h(~r5, ~r1, t) (2.87)
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Figure 2.19: Measured and simulated pulse-echo response for a concave transducer. The axial distance was 60 mm
and the small scatterer was moved in the lateral direction. The envelope of the RF signal is shown as 6 dB contours.

Expression (2.84) consists of three distinct terms. The interesting signal, and the one that should be displayed in
medical ultrasound, is fm(~r1). We, however, measure a time and spatially smoothed version of this, which obscures
the finer details in the picture. The smoothing consists of a convolution in time with a fixed wavelet vpe(t) and a
spatial convolution with a spatially varying hpe(~r1, ~r5, t).

2.6.5 Example of pulse echo response

To show that the pulse-echo response can be calculated to good accuracy, a single example is shown in Fig. 2.19 for a
concave transducer (r = 8.1 mm) with a focus at R = 150 mm. The measured and simulated responses were obtained
at a distance of 60 mm from the transducer surface. The measured pressure field was acquired by moving a needle
pointing toward the transducer in steps of 0.2 mm in the lateral direction, making measurements in a plane containing
the acoustical axis of the transducer. The simulated field was calculated by measuring vpe as the response from a
planar reflector, and then using (2.32) and (2.84) to calculate the field. The envelope of the RF-signals is shown as
a contour plot with 6 dB between the contours. The plots span 20 mm in the lateral direction and 4 µs in the axial
direction.

2.6.6 Attenuation effects

The model includes attenuation of the pulse due to propagation, but not the dispersive attenuation of the wave observed
when propagating in tissue. This changes the pulse continuously as it propagates down through the tissue. Not
including dispersive attenuation is, however, not a serious drawback of the theory, as this change of the pulse can
be lumped into the already spatially varying hpe. Or, if in the far field and assuming a homogeneous, dispersive
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attenuation, then an attenuation transfer function can be convolved onto vpe to yield an attenuated pulse.

Submerging the transducer into a homogeneously attenuating medium will modify the propagation of the spherical
waves, which will change continuously as a function of distance from the transducer. The spatial impulse is then
changed to

hatt(t, ~r) =

∫
T

∫
S

a(t− τ, |~r + ~r1|)
δ(τ − |~r+~r1|c )

|~r + ~r1|
dSdτ (2.88)

when linear propagation is assumed and the attenuation is the same throughout the medium. a is the attenuation
impulse response. The spherical wave is convolved with the distance dependent attenuation impulse response and
spherical waves emanating from different parts of the aperture are convolved with different attenuation impulse re-
sponses.

A model for the attenuation must be introduced in order to solve the integral. Ultrasound propagating in tissue ex-
periences a nearly linear with frequency attenuation and a commonly used attenuation amplitude transfer function
is

|A′(f, |~r|)| = exp(−β′f |~r|) (2.89)

where β′ is attenuation in nepers per meter. We here prefer to split the attenuation into a frequency dependent and a
frequency independent part term as

|A(f, |~r|)| = exp(−α|~r|) exp(−β(f − f0)|~r|) (2.90)

α is the frequency independent attenuation coefficient, and f0 the transducer center frequency. The phase of the
attenuation need also be considered. Kak and Dines [35] introduced a linear with frequency phase response

Θ(f) = 2πfτb|~r| (2.91)

where τb is the bulk propagation delay per unit length and is equal to 1/c. This, however, results in an attenuation
impulse response that is non-causal. Gurumurthy and Arthur [36] therefore suggested using a minimum phase impulse
response, where the amplitude and phase spectrum form a Hilbert transform pair. The attenuation spectrum is then
given by

A(f, |~r|) = exp(−α|~r|) exp(−β(f − f0)|~r|) (2.92)

× exp(−j2πf(τb + τm
β

π2
)|~r|)

× exp(j
2f

π
β|~r| ln(2πf))

where τm is the minimum phase delay factor. Gurumurthy and Arthur [36] suggest a τm value of 20 in order to fit the
dispersion found in tissue.

The inverse Fourier transform of (2.92) must be inserted into (2.88) and the integral has to be solved for the particular
transducer geometry. This is clearly a difficult, if not impossible, task and some approximations must be introduced.
All spherical waves arrive at nearly the same time instance, if the distance to the field point is much larger than the
transducer aperture. In this case the attenuation function is, thus, the same for all waves and the result is a convolution
between the attenuation impulse response and the spatial impulse response, which is a Dirac impulse. A spatial impulse
response other than a Dirac function indicates that the spherical waves arrive at different times. Multiplying the arrival
time with the propagation velocity gives the distance to the points on the aperture contributing to the response at that
time instance. A first approximation is, therefore, to multiply the non-attenuated spatial impulse response with the
proper frequency independent term. This approximation also assumes that the span of values for |~r + ~r1| is so small
that both 1/|~r + ~r1| and the attenuation can be assumed to be roughly constant.

The frequency dependent function will also change for the different values of the spatial impulse response. A non-
stationary convolution must, thus, be performed. One possible method to avoid this is to assume that the frequency
dependent attenuation impulse response is constant for the time and, thus, distances |~r+ ~r1| where h is non-zero. The
mean distance is then used in (2.92) and the inverse Fourier transform of A(f, |~rmid|) is convolved with h(t, ~r). The
accuracy of the approach depends on the duration of h and of the attenuation. The error in dB for a concave transducer
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Figure 2.20: Error of assuming a non-varying frequency dependent attenuation over the duration of the spatial impulse
response.

with a radius of 10 mm focused at 100 mm and an attenuation of 0.5 dB/[MHz cm] is shown in Fig. 2.20. The axial
distance to the transducer is 50 mm.

An example of the influence of attenuation on the point spread function (PSF) is shown in Fig. 2.21. A concave
transducer with a radius of 8 mm, center frequency of 3 MHz, and focused at 100 mm was used. Fig. 2.21 shows point
spread functions calculated under different conditions. The logarithmic envelope of the received pressure is displayed
as a function of time and lateral displacement. The left most graph shows the normalized PSF for the transducer
submerged in a non-attenuating medium. The distance to the field point is 60 mm and the function is shown for lateral
displacements from -8 to 8 mm. Introducing a 0.5 dB/[MHz cm] attenuation yields the normalized PSF shown in the
middle. The central core of the PSF does not change significantly, but the shape at -30 dB and below are somewhat
different from the non-attenuated response. A slightly broader and longer function is seen, but the overall shape is the
same.

An commonly used approach to characterize the field is to include the attenuation into the basic one-dimensional
pulse, and then use the non-attenuated spatial impulse response in calculating the PSF. This is the approach used in the
rightmost graph in Fig. 2.21. All attenuation is included in the pulse and the spatial impulse response calculated in the
leftmost graph is used for making the PSF. The similarity to the center graph is striking. Apart from a slightly longer
response, nearly all features of the field are the same. It is, thus, appropriate to estimate the attenuated one-dimensional
pulse and reconstruct the whole field from this and knowledge of the transducer geometry.
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Figure 2.21: Contour plots of point spread functions for different media and calculation methods. a: Non attenuating
medium. b: 0.5 dB/[MHz cm] attenuation. c: 0.5 dB/[MHz cm] attenuation on the one-dimensional pulse. There is
6 dB between the contour lines. The distance to the transducer is 60 mm.
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CHAPTER

THREE

Ultrasound imaging

Modern medical ultrasound scanners are used for imaging nearly all soft tissue structures in the body. The anatomy can
be studied from gray-scale B-mode images, where the reflectivity and scattering strength of the tissues are displayed.
The imaging is performed in real time with 20 to 100 images per second. The technique is widely used since it does
not use ionizing radiation and is safe and painless for the patient.

This chapter gives a short introduction to modern ultrasound imaging using array transducers. Part of the chapter is
based on [9] and [37].

3.1 Fourier relation

This section derives a simple relation between the oscillation of the transducer surface and the ultrasound field. It is
shown that field in the far-field can be found by a simple one-dimensional Fourier transform of the one-dimensional
aperture pattern. This might seem far from the actual imaging situation in the near field using pulsed excitation, but
the approach is very convenient in introducing all the major concepts like main and side lobes, grating lobes, etc. It
also very clearly reveals information about the relation between aperture properties and field properties.

3.1.1 Derivation of Fourier relation

Consider a simple line source as shown in Fig. 3.1 with a harmonic particle speed of U0 exp(jωt). Here U0 is the
vibration amplitude and ω is its angular frequency. The line element of length dx generates an increment in pressure
of [13]

dp = j
ρ0ck

4πr′
U0ap(x)ej(ωt−kr

′)dx, (3.1)

where ρ0 is density, c is speed of sound, k = ω/c is the wavenumber, and ap(x) is an amplitude scaling of the
individual parts of the aperture. In the far-field (r � L) the distance from the radiator to the field points is (see
Fig. 3.1)

r′ = r − x sin θ (3.2)

The emitted pressure is found by integrating over all the small elements of the aperture

p(r, θ, t) = j
ρ0cU0k

4π

∫ +∞

−∞
ap(x)

ej(ωt−r
′)

r′
dx. (3.3)

Notice that ap(x) = 0 if |x| > L/2. Here r′ can be replaced with r, if the extent of the array is small compared to the
distance to the field point (r � L). Using this approximation and inserting (3.2) in (3.3) gives

p(r, θ, t) = j
ρ0cU0k

4πr

∫ +∞

−∞
ap(x)ej(ωt−kr+kx sin θ)dx =

ρ0cU0k

4πr
ej(ωt−kr)

∫ +∞

−∞
ap(x)ejkx sin θdx, (3.4)
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Figure 3.1: Geometry for line aperture.

since ωt and kr are independent of x. Hereby the pressure amplitude of the field for a given frequency can be split
into two factors:

Pax(r) =
ρ0cU0kL

4πr

H(θ) =
1

L

∫ +∞

−∞
ap(x)ejkx sin θdx (3.5)

P (r, θ) = Pax(r)H(θ)

The first factor Pax(r) characterizes how the field drops off in the axial direction as a factor of distance, and H(θ)
gives the variation of the field as a function of angle. The first term drops off with 1/r as for a simple point source and
H(θ) is found from the aperture function ap(x). A slight rearrangement gives1

H(θ) =
1

L

∫ +∞

−∞
ap(x)ej2πxf

sin θ
c dx =

1

L

∫ +∞

−∞
ap(x)ej2πxf

′
dx. (3.6)

This very closely resembles the standard Fourier integral given by

G(f) =

∫ +∞

−∞
g(t)e−j2πtfdt

g(t) =

∫ +∞

−∞
G(f)ej2πtfdf (3.7)

There is, thus, a Fourier relation between the radial beam pattern and the aperture function, and the normal Fourier
relations can be used for understanding the beam patterns for typical apertures.

1The term 1/L is included to make H(θ) a unit less number.
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Figure 3.2: Angular beam pattern for a line aperture with a uniform aperture function as a function of angle (top) and
as a function of k sin(θ) (bottom).

3.1.2 Beam patterns

The first example is for a simple line source, where the aperture function is constant such that

ap(x) =

{
1 |x| ≤ L/2
0 else (3.8)

The angular factor is then

H(θ) =
sin(πLf sin θ

c )

πLf sin θ
c

=
sin(k2L sin θ)

k
2L sin θ

(3.9)

A plot of the sinc function is shown in Fig. 3.2. A single main lobe can be seen with a number of side lobe peaks. The
peaks fall off proportionally to k or f . The angle of the first zero in the function is found at

sin θ =
c

Lf
=
λ

L
. (3.10)

The angle is, thus, dependent on the frequency and the size of the array. A large array or a high emitted frequency,
therefore, gives a narrow main lobe.

The magnitude of the first sidelobe relative to the mainlobe is given by

H(arcsin( 3c
2Lf ))

H(0)
= L

sin(3π/2)

3π/2
/L =

2

3π
(3.11)

The relative sidelobe level is, thus, independent of the size of the array and of the frequency, and is solely determined
by the aperture function ap(x) through the Fourier relation. The large discontinuities of ap(x), thus, give rise to the
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high side lobe level, and they can be reduced by selecting an aperture function that is smoother like a Hanning window
or a Gaussian shape.

Modern ultrasound transducers consist of a number of elements each radiating ultrasound energy. Neglecting the
phasing of the element (see Section 3.2) due to the far-field assumption, the aperture function can be described by

ap(x) = aps(x) ∗
N/2∑

n=−N/2

δ(x− dxn), (3.12)

where aps(x) is the aperture function for the individual elements, dx is the spacing (pitch) between the centers of the
individual elements, and N is the number of elements in the array. Using the Fourier relationship the angular beam
pattern can be described by

Hp(θ) = Hps(θ)Hper(θ), (3.13)

where
N/2∑

n=−N/2

δ(x− dxn)↔ Hper(θ) =

N/2∑
n=−N/2

e−jndxksinθ. =

N/2∑
n=−N/2

e−j2π
fsinθ
c ndx . (3.14)

Summing the geometric series gives

Hper(θ) =
sin
(
(N + 1)k2dx sin θ

)
sin
(
k
2dx sin θ

) (3.15)

is the Fourier transform of series of delta functions. This function repeats itself with a period that is a multiple of

π =
k

2
dx sin θ

sin θ =
π

kdx
=

λ

dx
. (3.16)

This repetitive function gives rise to the grating lobes in the field. An example is shown in Fig. 3.3.

The grating lobes are due to the periodic nature of the array, and corresponds to sampling of a continuous time signal.
The grating lobes will be outside a ±90 deg. imaging area if

λ

dx
= 1

dx = λ (3.17)

Often the beam is steered in a direction and in order to ensure that grating lobes do not appear in the image, the spacing
or pitch of the elements is selected to be dx = λ/2. This also includes ample margin for the modern transducers that
often have a very broad bandwidth.

An array beam can be steered in a direction by applying a time delay on the individual elements. The difference in
arrival time for a given direction θ0 is

τ =
dx sin θ0

c
(3.18)

Steering in a direction θ0 can, therefore, be accomplished by using

sin θ0 =
cτ

dx
(3.19)

where τ is the delay to apply to the signal on the element closest to the center of the array. A delay of 2τ is then
applied on the second element and so forth. The beam pattern for the grating lobe is then replaced by

Hper(θ) =
sin
(

(N + 1)k2dx sin
(
θ − cτ

dx

))
sin
(
k
2dx sin

(
θ − cτ

dx

)) . (3.20)

Notice that the delay is independent of frequency, since it is essentially only determined by the speed of sound.
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Figure 3.3: Grating lobes for array transducer consisting of 8 point elements (top) and of 8 elements with a size of
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3.2 Focusing

The essence of focusing an ultrasound beam is to align the pressure fields from all parts of the aperture to arrive at
the field point at the same time. This can be done through a physically curved aperture, through a lens in front of the
aperture, or by the use of electronic delays for multi-element arrays. All seek to align the arrival of the waves at a
given point through delaying or advancing the fields from the individual elements. The delay (positive or negative) is
determined using ray acoustics. The path length from the aperture to the point gives the propagation time and this is
adjusted relative to some reference point. The propagation from the center of the aperture element to the field point is

ti =
1

c

√
(xi − xf )2 + (yi − yf )2 + (zi − zf )2 (3.21)

where (xf , yf , zf ) is the position of the focal point, (xi, yi, zi) is the center for the physical element number i, c is the
speed of sound, and ti is the calculated propagation time.

A point is selected on the whole aperture as a reference for the imaging process. The propagation time for this is

tc =
1

c

√
(xc − xf )2 + (yc − yf )2 + (zc − zf )2 (3.22)

where (xc, yc, zc) is the reference center point on the aperture. The delay to use on each element of the array is then

∆ti =
1

c

(√
(xc − xf )2 + (yc − yf )2 + (zc − zf )2 −

√
(xi − xf )2 + (yi − yf )2 + (zi − zf )2

)
(3.23)

Notice that there is no limit on the selection of the different points, and the beam can, thus, be steered in a preferred
direction.

The arguments here have been given for emission from an array, but they are equally valid during reception of the
ultrasound waves due to acoustic reciprocity. At reception it is also possible to change the focus as a function of time
and thereby obtain a dynamic tracking focus. This is used by all modern ultrasound scanners, Beamformers based on
analog technology makes it possible to create several receive foci and the newer digital scanners change the focusing
continuously for every depth in receive. A single focus is only possible in transmit and composite imaging is therefore
often used in modern imaging. Here several pulse emissions with focusing at different depths in the same direction are
used and the received signals are combined to form one image focused in both transmit and receive at different depths
(composit imaging).

The focusing can, thus, be defined through time lines as:

From time Focus at
0 x1, y1, z1

t1 x1, y1, z1

t2 x2, y2, z2

...
...

For each focal zone there is an associated focal point and the time from which this focus is used. The arrival time from
the field point to the physical transducer element is used for deciding which focus is used. Another possibility is to set
the focusing to be dynamic, so that the focus is changed as a function of time and thereby depth. The focusing is then
set as a direction defined by two angles and a starting point on the aperture.

Section 3.1 showed that the side and grating lobes of the array can be reduced by employing apodization of the
elements. Again a fixed function can be used in transmit and a dynamic function in receive defined by
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From time Apodize with
0 a1,1, a1,2, · · · a1,Ne

t1 a1,1, a1,2, · · · a1,Ne

t2 a2,1, a2,2, · · · a2,Ne

t3 a3,1, a3,2, · · · a3,Ne
...

...

Here a1,1 is the amplitude scaling value multiplied onto element 1 after time instance t1. Typically a Hamming
or Gaussian shaped function is used for the apodization. In receive the width of the function is often increased to
compensate for attenuation effects and for keeping the point spread function roughly constant. The F-number defined
by

F =
D

L
(3.24)

where L is the total width of the active aperture and D is the distance to the focus, is often kept constant. More of the
aperture is often used for larger depths and a compensation for the attenuation is thereby partly made. An example of
the use of dynamic apodization is given in Section 3.6.

3.3 Fields from array transducers

Most modern scanners use arrays for generating and receiving the ultrasound fields. These fields are quite simple to
calculate, when the spatial impulse response for a single element is known. This is the approach used in the Field II
program, and this section will extend the spatial impulse response to multi element transducers and will elaborate on
some of the features derived for the fields in Section 3.1.

Since the ultrasound propagation is assumed to be linear, the individual spatial impulse responses can simply be added.
If he(~rp, t) denotes the spatial impulse response for the element at position ~ri and the field point ~rp, then the spatial
impulse response for the array is

ha(~rp, t) =

N−1∑
i=0

he(~ri, ~rp, t), (3.25)

assuming all N elements to be identical.

Let us assume that the elements are very small and the field point is far away from the array, so he is a Dirac function.
Then

ha(~rp, t) =
k

Rp

N−1∑
i=0

δ(t− |~ri − ~rp|
c

) (3.26)

when Rp = |~ra−~rp|, k is a constant of proportionality, and ~ra is the position of the array. Thus, ha is a train of Dirac
pulses. If the spacing between the elements is D, then

ha(~rp, t) =
k

Rp

N−1∑
i=0

δ

(
t− |~ra + iD~re − ~rp|

c

)
, (3.27)

where ~re is a unit vector pointing in the direction along the elements. The geometry is shown in Fig. 3.4.

The difference in arrival time between elements far from the transducer is

∆t =
D sin Θ

c
. (3.28)

The spatial impulse response is, thus, a series of Dirac pulses separated by ∆t.

ha(~rp, t) ≈
k

Rp

N−1∑
i=0

δ

(
t− Rp

c
− i∆t

)
. (3.29)
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Figure 3.4: Geometry of linear array (from [9], Copyright Cambridge University Press).

The time between the Dirac pulses and the shape of the excitation determines whether signals from individual elements
add or cancel out. If the separation in arrival times corresponds to exactly one or more periods of a sine wave, then
they are in phase and add constructively. Thus, peaks in the response are found for

n
1

f
=
D sin Θ

c
. (3.30)

The main lobe is found for Θ = 0 and the next maximum in the response is found for

Θ = arcsin

(
c

fD

)
= arcsin

(
λ

D

)
. (3.31)

For a 3 MHz array with an element spacing of 1 mm, this amounts to Θ = 31◦, which will be within the image
plane. The received response is, thus, affected by scatterers positioned 31◦ off the image axis, and they will appear in
the lines acquired as grating lobes. The first grating lobe can be moved outside the image plane, if the elements are
separated by less than a wavelength. Usually, half a wavelength separation is desirable, as this gives some margin for
a broad-band pulse and beam steering.

The beam pattern as a function of angle for a particular frequency can be found by Fourier transforming ha

Ha(f) =
k

Rp

N−1∑
i=0

exp

(
−j2πf

(
Rp
c

+ i
D sin Θ

c

))

= exp(−j2πRp
c

)
k

Rp

N−1∑
i=0

exp

(
−j2πf D sin Θ

c

)i
(3.32)

=
sin(πf D sin Θ

c N)

sin(πf D sin Θ
c )

exp(−jπf(N − 1)
D sin Θ

c
)
k

Rp
exp(−j2πRp

c
).

The terms exp(−j2πRpc ) and exp(−jπf(N − 1)D sin Θ
c ) are constant phase shifts and play no role for the amplitude

of the beam profile. Thus, the amplitude of the beam profile is

|Ha(f)| =

∣∣∣∣∣ kRp sin(NπDλ sin Θ)

sin(πDλ sin Θ)

∣∣∣∣∣ . (3.33)

The beam profile at 3 MHz is shown in Fig. 3.5 for a 64-element array with D = 1 mm.
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Figure 3.5: Far-field continuous wave beam profile at 3 MHz for linear array consisting of 64 point sources with an
inter-element spacing of 1 mm (from [9], Copyright Cambridge University Press).
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Figure 3.6: Beam profiles for an array consisting of point sources (top) or rectangular elements (bottom). The excita-
tion pulse has a frequency of 3 MHz and the element spacing is 1 mm. The distance to the field point is 100 mm (from
[9], Copyright Cambridge University Press).

Several factors change the beam profile for real, pulsed arrays compared with the analysis given here. First, the ele-
ments are not points, but rather are rectangular elements with an off-axis spatial impulse response markedly different
from a Dirac pulse. Therefore, the spatial impulse responses of the individual elements will overlap and exact cancel-
lation or addition will not take place. Second, the excitation pulse is broad band, which again influences the sidelobes.
Examples of simulated responses are shown in Fig. 3.6.

The top graph shows an array of 64 point sources excited with a Gaussian 3 MHz pulse with Br = 0.2. The space
between the elements is 1 mm. The maximum of the response at a radial position of 100 mm from the transducer is
taken. The bottom graph shows the response when rectangular elements of 1 × 6 mm are used. This demonstrates the
somewhat crude approximation of using the far-field point source CW response to characterize arrays.

Fig. 3.7 shows the different point spread functions encountered when a phased array is used to scan over a 15 cm
depth. The array consists of 128 elements each 0.2 × 5 mm in size, and the kerf between the elements is 0.05 mm.
The transmit focus is at 70 mm, and the foci are at 30, 70, and 110 mm during reception. Quite complicated point
spread functions are encountered, and they vary substantially with depth in tissue. Notice especially the edge waves,
which dominate the response close to the transducer. The edge effect can be reduced by weighting responses from
different elements. This is also called apodization. The excitation pulses to elements at the transducer edge are
reduced, and this diminishes the edge waves. More examples are shown below in Section 3.6.

3.4 Imaging with arrays

Basically there are three different kinds of images acquired by multi-element array transducers, i.e. linear, convex, and
phased as shown in Figures 3.8, 3.10, and 3.11. The linear array transducer is shown in Fig. 3.8. It selects the region of
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Figure 3.8: Linear array transducer for obtaining a rectangular cross-sectional image.
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Figure 3.9: Electronic focusing and steering of an ultrasound beam.

investigation by firing a set of elements situated over the region. The beam is moved over the imaging region by firing
sets of contiguous elements. Focusing in transmit is achieved by delaying the excitation of the individual elements, so
an initially concave beam shape is emitted, as shown in Fig. 3.9.

The beam can also be focused during reception by delaying and adding responses from the different elements. A
continuous focus or several focal zones can be maintained as explained in Section 3.2. Only one focal zone is possible
in transmit, but a composite image using a set of foci from several transmissions can be made. Often 4 to 8 zones
can be individually placed at selected depths in modern scanners. The frame rate is then lowered by the number of
transmit foci.

The linear arrays acquire a rectangular image, and the arrays can be quite large to cover a sufficient region of interest
(ROI). A larger area can be scanned with a smaller array, if the elements are placed on a convex surface as shown in
Fig. 3.10. A sector scan is then obtained. The method of focusing and beam sweeping during transmit and receive is
the same as for the linear array, and a substantial number of elements (often 128 or 256) is employed.

The convex and linear arrays are often too large to image the heart when probing between the ribs. A small array size
can be used and a large field of view attained by using a phased array as shown in Fig. 3.11. All array elements are
used here both during transmit and receive. The direction of the beam is steered by electrically delaying the signals to
or from the elements, as shown in Fig. 3.9b. Images can be acquired through a small window and the beam rapidly
sweeped over the ROI. The rapid steering of the beam compared to mechanical transducers is of especial importance
in flow imaging. This has made the phased array the choice for cardiological investigations through the ribs.

More advanced arrays are even being introduced these years with the increase in number of elements and digital
beamforming. Especially elevation focusing (out of the imaging plane) is important. A curved surface as shown in
Fig. 3.12 is used for obtaining the elevation focusing essential for an improved image quality. Electronic beamforming
can also be used in the elevation direction by dividing the elements in the elevation direction. The elevation focusing
in receive can then be dynamically controlled for e.g. the array shown in Fig. 3.13.
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Figure 3.10: Convex array transducer for obtaining a polar cross-sectional image.

Figure 3.11: Phased array transducer for obtaining a polar cross-sectional image using a transducer with a small
foot-print.
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Figure 3.12: Elevation focused convex array transducer for obtaining a rectangular cross-sectional image, which
is focused in the out-of-plane direction. The curvature in the elevation direction is exaggerated in the figure for
illustration purposes.
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Figure 3.13: Elevation focused convex array transducer with element division in the elevation direction. The curvature
in the elevation direction is exaggerated in the figure for illustration purposes
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3.5 Simulation of ultrasound imaging

One of the first steps in designing an ultrasound system is the selection of the appropriate number of elements for the
array transducers and the number of channels for the beamformer. The focusing strategy in terms of number of focal
zones and apodization must also be determined. These choices are often not easy, since it is difficult to determine
the effect in the resulting images of increasing the number of channels and selecting more or less advanced focusing
schemes. It is therefore beneficial to simulate the whole imaging system in order to quantify the image quality.

The program Field II was rewritten to make it possible to simulate the whole imaging process with time varying
focusing and apodization as described in [38] and [21]. This has paved the way for doing realistic simulated imaging
with multiple focal zones for transmission and reception and for using dynamic apodization. It is hereby possible to
simulate ultrasound imaging for all image types including flow images, and the purpose of this section is to present
some standard simulation phantoms that can be used in designing and evaluating ultrasound transducers, beamformers
and systems. The phantoms described can be divided into ordinary string/cyst phantoms, artificial human phantoms
and flow imaging phantoms. The ordinary computer phantoms include both a string phantoms for evaluating the point
spread function as a function of spatial positions as well as a cyst/string phantom. Artificial human phantoms of a fetus
in the third month of development and an articial kedney are also shown. The simulation of flow and the associated
phantoms will be described in Section 5.5. All the phantoms can be used with any arbitrary transducer configuration
like single element, linear, convex, or phased array transducers, with any apodization and focusing scheme.

3.5.1 Simulation model

The first simple treatment of ultrasound is often based on the reflection and transmission of plane waves. It is assumed
that the propagating wave impinges on plane boundaries between tissues with different mean acoustic properties. Such
boundaries are rarely found in the human body, and seldom show on ultrasound images. This is demonstrated by the
image shown in Fig. 3.14. Here the skull of the fetus is not clearly marked. It is quite obvious that there is a clear
boundary between the fetus and the surrounding amniotic fluid. The skull boundary is not visible in the image, because
the angle between the beam and the boundary has a value such that the sound bounces off in another direction, and,
therefore, does not reach the transducer. Despite this, the extent of the head can still be seen. This is due to the
scattering of the ultrasound wave. Small changes in density, compressibility, and absorption give rise to a scattered
wave radiating in all directions. The backscattered field is received by the transducer and displayed on the screen. One
might well argue that scattering is what makes ultrasound images useful for diagnostic purposes, and it is, as will be
seen later, the physical phenomena that makes detection of blood velocities possible. Ultrasound scanners are, in fact,
optimized to show the backscattered signal, which is considerably weaker than that found from reflecting boundaries.
Such reflections will usually be displayed as bright white on the screen, and can potentially saturate the receiving
circuits in the scanner. An example can be seen at the neck of the fetus, where a structure is perpendicular to the beam.
This strong reflection saturates the input amplifier of this scanner. Typical boundary reflections are encountered from
the diaphragm, blood vessel walls, and organ boundaries.

An enlarged view of an image of a liver is seen in Fig. 3.15. The image has a grainy appearance, and not a homogeneous
gray or black level as might be expected from homogeneous liver tissue. This type of pattern is called speckle. The
displayed signals are the backscatter from the liver tissue, and are due to connective tissue, cells, and fibrious tissue in
the liver. These structures are much smaller than one wavelength of the ultrasound, and the speckle pattern displayed
does not directly reveal physical structure. It is rather the constructive and destructive interference of scattered signals
from all the small structures. So it is not possible to visualize and diagnose microstructure, but the strength of the
signal is an indication of pathology. A strong signal from liver tissue, making a bright image, is, e.g., an indication of
a fatty or cirrhotic liver.

As the scattered wave emanates from numerous contributors, it is appropriate to characterize it in statistical terms. The
amplitude distribution follows a Gaussian distribution [39], and is, thus, fully characterized by its mean and variance.
The mean value is zero since the scattered signal is generated by differences in the tissue from the mean acoustic
properties.
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Figure 3.14: Ultrasound image of a 13th week fetus. The markers at the border of the image indicate one centimeter
(from [9], Copyright Cambridge University Press).
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Figure 3.15: 4 × 4 cm image of a human liver from a healthy 28-year-old man. The completely dark areas are blood
vessels (from [9], Copyright Cambridge University Press).

Although the backscattered signal is characterized in statistical terms, one should be careful not to interpret the signal
as random in the sense that a new set of values is generated for each measurement. The same signal will result, when
a transducer is probing the same structure, if the structure is stationary. Even a slight shift in position will yield a
backscattered signal correlated with that from the adjacent position. The shift over which the signals are correlated is
essentially dependent on the extent of the ultrasound field. This can also be seen from the image in Fig. 3.15, as the
laterally elongated white speckles in the image indicate transverse correlation. The extent of these speckle spots is a
rough indication of the point spread function of the system.

The correlation between different measurements is what makes it possible to estimate blood velocities with ultrasound.
As there is a strong correlation for small movements, it is possible to detect shifts in position by comparing or, more
strictly, correlating successive measurements of moving structure, e.g., blood cells.

Since the backscattered signal depends on the constructive and destructive interference of waves from numerous small
tissue structures, it is not meaningful to talk about the reflection strength of the individual structures. Rather, it is
the deviations within the tissue and the composition of the tissue that determine the strength of the returned signal.
The magnitude of the returned signal is, therefore, described in terms of the power of the scattered signal. Since the
small structures reradiate waves in all directions and the scattering structures might be ordered in some direction, the
returned power will, in general, be dependent on the relative position between the ultrasound emitter and receiver.
Such a medium is called anisotropic, examples of which are muscle and kidney tissue. By comparison, liver tissue is
a fairly isotropic scattering medium, when its major vessels are excluded, and so is blood.

It is, thus, important that the simulation approach models the scattering mechanisms in the tissue. This is essentially
what the model derived in Chapter 2 does. Here the received signal from the transducer is:

pr(~r, t) = vpe(t) ?
t
fm(~r) ?

r
hpe(~r, t) (3.34)

where ?
r denotes spatial convolution. vpe is the pulse-echo impulse, which includes the transducer excitation and the

electro-mechanical impulse response during emission and reception of the pulse. fm accounts for the inhomogeneities

48 Chapter 3. Ultrasound imaging



in the tissue due to density and propagation velocity perturbations which give rise to the scattered signal. hpe is the
pulse-echo spatial impulse response that relates the transducer geometry to the spatial extent of the scattered field.
Explicitly written out these terms are:

vpe(t) =
ρ

2c2
Em(t) ?

t

∂3v(t)

∂t3
, fm(~r1) =

∆ρ(~r)

ρ
− 2∆c(~r)

c
, hpe(~r, t) = ht(~r, t) ∗ hr(~r, t) (3.35)

So the received response can be calculated by finding the spatial impulse response for the transmitting and receiving
transducer and then convolving with the impulse response of the transducer. A single RF line in an image can be
calculated by summing the response from a collection of scatterers in which the scattering strength is determined by
the density and speed of sound perturbations in the tissue. Homogeneous tissue can thus be made from a collection
of randomly placed scatterers with a scattering strength with a Gaussian distribution, where the variance of the distri-
bution is determined by the backscattering cross-section of the particular tissue. This is the approach taken in these
notes.

The computer phantoms typically consist of 100,000 or more discrete scatterers, and simulating 50 to 128 RF lines can
take several days depending on the computer used. It is therefore beneficial to split the simulation into concurrently
run sessions. This can easily be done by first generating the scatterer’s position and amplitude and then storing them in
a file. This file can then the be used by a number of workstations to find the RF signal for different imaging directions,
which are then stored in separate files; one for each RF line. These files are then used to assemble an image. This is
the approach used for the simulations shown here in which 3 Pentium Pro 200 MHz PCs can generate one phantom
image over night using Matlab 5 and the Field II program.

3.6 Synthetic phantoms

The first synthetic phantom consists of a number of point targets placed with a distance of 5 mm starting at 15 mm
from the transducer surface. A linear sweep image of the points is then made and the resulting image is compressed
to show a 40 dB dynamic range. This phantom is suited for showing the spatial variation of the point spread function
for a particular transducer, focusing, and apodization scheme.

Twelve examples using this phantom are shown in Fig. 3.16. The top graphs show imaging without apodization and
the bottom graphs show images when a Hanning window is used for apodization in both transmit and receive. A 128
elements transducer with a nominal frequency of 3 MHz was used. The element height was 5 mm, the width was a
wavelength and the kerf 0.1 mm. The excitation of the transducer consisted of 2 periods of a 3 MHz sinusoid with
a Hanning weighting, and the impulse response of both the emit and receive aperture also was a two cycle, Hanning
weighted pulse. In the graphs A – C, 64 of the transducer elements were used for imaging, and the scanning was
done by translating the 64 active elements over the aperture and focusing in the proper points. In graph D and E 128
elements were used and the imaging was done solely by moving the focal points.

Graph A uses only a single focal point at 60 mm for both emission and reception. B also uses reception focusing at
every 20 mm starting from 30 mm. Graph C further adds emission focusing at 10, 20, 40, and 80 mm. D applies the
same focal zones as C, but uses 128 elements in the active aperture.

The focusing scheme used for E and F applies a new receive profile for each 2 mm. For analog beamformers this is
a small zone size. For digital beamformers it is a large zone size. Digital beamformer can be programmed for each
sample and thus a ”continuous” beamtracking can be obtained. In imaging systems focusing is used to obtain high
detail resolution and high contrast resolution preferably constant for all depths. This is not possible, so compromises
must be made. As an example figure F shows the result for multiple transmit zones and receive zones, like E, but now
a restriction is put on the active aperture. The size of the aperture is controlled to have a constant F-number (depth of
focus in tissue divided by width of aperture), 4 for transmit and 2 for receive, by dynamic apodization. This gives a
more homogeneous point spread function throughout the full depth. Especially for the apodized version. Still it can
be seen that the composite transmit can be improved in order to avoid the increased width of the point spread function
at e.g. 40 and 60 mm.
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Figure 3.16: Point target phantom imaged for different set-up of transmit and receive focusing and apodization. See
text for an explanation of the set-up.
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Figure 3.17: Computer phantom with point targets, cyst regions, and strongly reflecting regions.

The next phantom consists of a collection of point targets, five cyst regions, and five highly scattering regions. This
can be used for characterizing the contrast-lesion detection capabilities of an imaging system. The scatterers in the
phantom are generated by finding their random position within a 60 × 40 × 15 mm cube, and then ascribe a Gaussian
distributed amplitude to the scatterers. If the scatterer resides within a cyst region, the amplitude is set to zero.
Within the highly scattering region the amplitude is multiplied by 10. The point targets has a fixed amplitude of 100,
compared to the standard deviation of the Gaussian distributions of 1. A linear scan of the phantom was done with
a 192 element transducer, using 64 active elements with a Hanning apodization in transmit and receive. The element
height was 5 mm, the width was a wavelength and the kerf 0.05 mm. The pulses where the same as used for the point
phantom mentioned above. A single transmit focus was placed at 60 mm, and receive focusing was done at 20 mm
intervals from 30 mm from the transducer surface. The resulting image for 100,000 scatterers is shown in Fig. 3.17.
A homogeneous speckle pattern is seen along with all the features of the phantom.

3.7 Anatomic phantoms

The anatomic phantoms are attempts to generate images as they will be seen from real human subjects. This is done by
drawing a bitmap image of scattering strength of the region of interest. This map then determines the factor multiplied
onto the scattering amplitude generated from the Gaussian distribution, and models the difference in the density and
speed of sound perturbations in the tissue. Simulated boundaries were introduced by making lines in the scatterer map
along which the strong scatterers were placed. This is marked by completely white lines shown in the scatterer maps.
The model is currently two-dimensional, but can readily be expanded to three dimensions. Currently, the elevation
direction is merely made by making a 15 mm thickness for the scatterer positions, which are randomly distributed in
the interval.

Two different phantoms have been made; a fetus in the third month of development and a left kidney in a longitudinal
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Figure 3.18: Simulation of artificial fetus.

scan. For both was used 200,000 scatterers randomly distributed within the phantom, and with a Gaussian distributed
scatterer amplitude with a standard deviation determined by the scatterer map. The phantoms were scanned with a 5
MHz 64 element phased array transducer with λ/2 spacing and Hanning apodization. A single transmit focus 70 mm
from the transducer was used, and focusing during reception is at 40 to 140 mm in 10 mm increments. The images
consists of 128 lines with 0.7 degrees between lines.

Fig. 3.19 shows the artificial kidney scatterer map on the left and the resulting image on the right. Note especially the
bright regions where the boundary of the kidney is orthogonal to the ultrasound, and thus a large signal is received.
Note also the fuzziness of the boundary, where they are parallel with the ultrasound beam, which is also seen on actual
ultrasound scans. Fig. 3.18 shows the fetus. Note how the anatomy can be clearly seen at the level of detail of the
scatterer map. The same boundary features as for the kidney image is also seen.

The images have many of the features from real scan images, but still lack details. This can be ascribed to the low
level of details in the bitmap images, and that only a 2D model is used. But the images do show great potential for
making powerful fully synthetic phantoms, that can be used for image quality evaluation.
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Figure 3.19: Simulation of artificial kidney.
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Abstract

The paper describes the use of synthetic aperture (SA) imaging in medical ultrasound. SA imaging is a radical break with today’s
commercial systems, where the image is acquired sequentially one image line at a time. This puts a strict limit on the frame rate and
the possibility of acquiring a sufficient amount of data for high precision flow estimation. These constrictions can be lifted by employing
SA imaging. Here data is acquired simultaneously from all directions over a number of emissions, and the full image can be reconstructed
from this data. The paper demonstrates the many benefits of SA imaging. Due to the complete data set, it is possible to have both
dynamic transmit and receive focusing to improve contrast and resolution. It is also possible to improve penetration depth by employing
codes during ultrasound transmission. Data sets for vector flow imaging can be acquired using short imaging sequences, whereby both
the correct velocity magnitude and angle can be estimated. A number of examples of both phantom and in vivo SA images will be pre-
sented measured by the experimental ultrasound scanner RASMUS to demonstrate the many benefits of SA imaging.
� 2006 Elsevier B.V. All rights reserved.

Keywords: Ultrasound imaging; Synthetic aperture; Vector velocity estimation

1. Introduction

The paper gives a review of synthetic aperture (SA) tech-
niques for medical ultrasound with a description of the cur-
rent status and the obstacles towards obtaining real-time
SA imaging. Synthetic aperture techniques were originally
conceived for radar systems in the 1950s and were initially
implemented using digital computers in the late 1970s and
more advanced techniques were introduced in the late
1980s [1]. There are many similarities between Radar and
ultrasound systems, but there are also very significant differ-
ences. A SA Radar system usually employs one transmitter
and receiver, and the aperture in synthesized by moving the
antenna over the region of interest in an airplane or satellite.
In medical ultrasound, the array has a fixed number of ele-
ments and is usually stationary. The synthesizing is per-
formed by acquiring data from parts of the array to
reduce the amount of electronic channels. For Radar, the
object is most often in the far-field of the array, whereas

the object always is in the near-field of a medical ultrasound
system, which complicates the reconstruction. Since the
medical array is stationary, it is possible to repeat measure-
ments rapidly, which is not the case for a SA Radar systems.
The position between the different elements is also fixed in
ultrasound, whereas the deviations from a straight flight
path for airplane often have to be compensated for in Radar
systems. A vital difference is also that the dynamic range in
a Radar image is significantly less than the 40–80 dB
dynamic range in ultrasound images.

All these factors affect the implementation of a medical
SA ultrasound system and many details have to be changed
compared to SA Radar systems to obtain a successful
implementation. This paper will describe some of the
choices to be made to make a complete SA system that
includes vector flow estimation.

Synthetic aperture imaging has been investigated in
ultrasonics since the late 1960 and early 1970 [2,3]. In the
1970s and 1980s, it was primarily explored for nondestruc-
tive testing (NDT) using a more or less direct implementa-
tion of the SA principle, known today as monostatic
synthetic aperture imaging [4]. With the introduction of
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transducer arrays in the 1970s, focus was gradually directed
towards this application area to pursue real-time imple-
mentations [5–7].

Until the beginning of 1990, the idea of applying the syn-
thetic aperture imaging approach for medical ultrasound
imaging had only been considered occasionally [3,8]. In
1992, O’Donnell and Thomas published a method intended
for intravascular imaging based on synthetic aperture imag-
ing utilizing a circular aperture [9]. To overcome the prob-
lem with low SNR and impedance matching between the
transducer and receiver circuit, the single element transmis-
sion was replaced by simultaneous excitation of a multi-ele-
ment subaperture. Due to the circular surface of the
transducer, the subaperture generated a spherical wave with
limited angular extend at each emission, thus, permitting
synthetic aperture focusing to be applied. This was the first
direct attempt to apply synthetic aperture imaging for med-
ical ultrasound imaging. Since then, the application of
multi-element subapertures to increase the SNR of syn-
thetic aperture imaging has been investigated using phased
array transducers by Karaman and colleagues for small
scale systems [10,11], by Lockwood and colleagues for
sparse synthetic aperture systems with primary focus on
3D imaging applications [12,13], and by Nikolov and col-
leagues for recursive ultrasound imaging [14]. In all cases,
the multi-element subaperture was used to emulate the radi-
ation pattern of the single element transmission by applying
de-focusing delays in such a way that a spherical wave with
limited angular extend was produced. The definition of syn-
thetic transmit aperture (STA) imaging was introduced by
Chiao and colleagues in [15]. This paper also considered
the feasibility of applying spatial encoding to enable trans-
mission on several elements simultaneously, while separat-
ing the individual transmissions in the receiver using
addition and subtraction of the received signals. A third
approach, which utilizes orthogonal Golay codes to
increase the SNR, while transmitting simultaneously on
several elements, was also considered by Chiao and Thomas
in [16].

The influence of motion in STA imaging and methods
for compensation have been investigated in several publica-
tions [17–21]. Commonly it is reported that axial motion is
the dominant factor causing image quality degradation due
to the significantly higher spatial frequency in this dimen-
sion. The presented motion estimation methods are gener-
ally based on time-domain cross-correlation of reference
signals to find the shift in position in the axial dimension.
Since tissue motion is inherently three dimensional, it is
however likely, that to retain the advantages of STA imag-
ing, at least two dimensional (2D) motion correction to
compensate successfully for scan plane tissue motion is
required.

2. Conventional ultrasound imaging

Conventional ultrasound images are acquired sequen-
tially one image line at a time. The acquisition rate is, thus,

limited by the speed of sound c, and the maximum frame
rate fr for an image with Nl lines to a depth of D is

fr ¼
c

2DN l

: ð1Þ

For larger depths and increasing number of lines the frame
rate gets progressively lower. The approximate 3-dB reso-
lution of an imaging array consisting of N elements with
a pitch of Dp is given by

b3 dB ¼ 0:5
Di

NDp

k ¼ 0:5
Di

NDp

c
f0

; ð2Þ

where Di is focus depth and f0 is center frequency. Assum-
ing the image to cover the full size of the array and a pitch
Dp = k/2 then gives a frame rate of

N l ¼
NDp

b3 dB

¼ 2
f0

Dic
; f r ¼

Dif0

DN 2
ð3Þ

for a properly sampled image. Current systems increase the
number of active elements in the beamformer and better
engineering makes it possible to increase the transducer cen-
ter frequency for the same penetration depth, which lowers
the frame rate, if the image quality has to be maintained.

For flow estimation the problem is increased, since sev-
eral pulse-echo lines have to be acquired from the same
direction in order to estimate the blood velocity [22]. Often
8–16 lines have to be used per estimate and this corre-
spondingly lowers the frame rate. It is 6.4 Hz for a depth
of 15 cm, 100 image directions and 8 lines per direction
for, e.g., scanning the heart. This is an unacceptable low
rate, and the area for estimating the velocity is often limited
in conventional systems.

A further problem in conventional imaging is the single
transmit focus, so that the imaging is only optimally
focused at one depth. This can be overcome by making
compound imaging using a number of transmit foci, but
the frame rate is then correspondingly decreased.

There are, thus, good reasons for developing alternatives
to conventional imaging, where the frame rate and single
transmit focusing problems can be solved. One alternative
is to use synthetic aperture imaging. It will be shown that
this can solve both the frame rate and focusing problem,
but it also has several problems associated with it in terms
of penetration depth, flow estimation, and implementation.
The following sections will address these issues and refer to
solutions in the literature.

3. Introduction to synthetic aperture imaging

The basic method for acquiring synthetic aperture ultra-
sound images is shown in Fig. 1. A single element in the
transducer aperture is used for transmitting a spherical
wave covering the full image region. The received signals
for all or part of the elements in the aperture are sampled
for each transmission. This data can be used for making
a low resolution image, which is only focused in receive
due to the un-focused transmission.
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Focusing is performed by finding the geometric distance
from the transmitting element to the imaging point and
back to the receiving element. Dividing this distance by
the speed of sound c gives the time instance tp(i, j) to take
out the proper signal value for summation. For an image
point~rp the time is, thus:

tpði; jÞ ¼
j~rp �~reðiÞj þ j~rp �~rrðjÞj

c
ð4Þ

where~reðiÞ denotes the position of the transmitting element
i and ~rrðjÞ the receiving element j’s position. This is done
for every point in the resulting image to yield a low resolu-
tion image. Combining the low resolution images then re-
sults in a high resolution image, since fully dynamic
focusing has been performed for all points in the image.
The final focused signal yfð~rpÞ is then:

yfð~rpÞ ¼
XN

j¼1

XM

i¼1

aðtpði; jÞ; i; jÞyrðtpði; jÞ; i; jÞ ð5Þ

where yr(t, i, j) is the received signal for emission i on ele-
ment j, a(tp(i, j), i, j) is the weighting function (apodization)
applied onto this signal, N is the number of transducer ele-
ments, and M is the number of emissions. The transmit
focusing is, thus, synthesized by combining the low resolu-
tion images, and the focusing calculation makes the trans-
mit focus dynamic for all points in the image. The focus is,
therefore, both dynamic in transmit and receive and the
highest possible resolution for delay-sum beamforcing is
obtained everywhere in the image. Note that the focused

signal is a function of space, and that this can be anywhere
in the image. Focusing can, thus, be performed in any or-
der and direction, and this will later be used to describe a
vector flow system in Section 6. It is also only needed to fo-
cus at the points, that are actually shown in the final image
as suggested in [23,24]. This, however, necessitates that the
complex Hilbert transformed received signal is beam-
formed to find the instantaneous envelope.

SA imaging makes it possible to decouple frame rate
and pulse repetition time, as only a sparse set of emissions
can be used for creating a full image. Very fast imaging
can, therefore, be made albeit with a lower resolution
and higher side-lobes. This can be seen in Fig. 2, where
the angular resolution is seen for different number of emis-
sions [25]. A 64 channel fully sampled system was used
together with a 5 MHz linear array transducer with a pitch
of 0.21 mm. The resolution is determined by the width of
the transmitting and receiving aperture and the side-lobe
levels are determined by the apodization and the number
of emissions.

Very fast imaging at the pulse repetition frequency can
be attained by using recursive imaging [14]. The approach
uses that the SA acquisition sequence is repeated, so that
emission 1 is performed again after all emissions have been
made. A full image can be made by combining all emis-
sions, which can be from 1 to M or from 2 to M and 1.
The new emission 1 can, thus, replace the old emission 1,
which can be done by subtracting the old and adding the
new emission. This can be done recursively, which results

element # 1 element # 2 
emission # 2 emission # 1 

 
emission # N 
element # N 

receive with all elements

low resolution 

image # 2
low resolution

image # N

low resolution 
image # 1 

summation

high resolution image

Fig. 1. Basic principle of synthetic aperture ultrasound imaging (from [25]).
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in a new image after every emission. Such an approach can
yield very high frame rates and can be used for velocity
imaging as described in Section 6.

4. Penetration problem

A major problem in SA imaging is the limited penetra-
tion depth, since an un-focused wave is used in transmit
and only a single element emits energy. The problem can
be solved by combining several elements for transmission
and using longer waveforms emitting more energy. Kar-
man et al. [10] suggested combining several elements Nt

in transmit, with a delay curve to de-focus the emission
to emulate a spherical wave. This can increase the emitted
amplitude be a factor of

ffiffiffiffiffi
N t

p
.

It can be combined with using a chirp excitation [26,27]
to increase the energy as used in Radar systems [28]. A
chirp makes a linear frequency sweep from, e.g., low to
high frequencies in the transducer’s bandwidth B. Applying
a matched filter to the received signal compresses the chirp
to a short pulse. The filter is a time reversed version of the
pulse and therefore, has the conjugated phase of the chirp.
Making the convolution cancels out the phase of the chirp,
which makes the resulting signal a linear phase signal and
the received signal corresponds to the autocorrelation func-

tion of the chirp. Covering the bandwidth of the transducer
then gives a resulting pulse or autocorrelation that has a
duration proportional to 1/B. Directly using a rectangular
chirp in ultrasound is not possible, as the compressed
chirps has temporal side-lobes, which can be as high as
�13 dB. This severely limits the contrast of the ultrasound
image that has a dynamic range of, e.g., 60 dB. The prob-
lem can be solved by applying tapering to the emitted chirp
and by applying a window on the matched filter as shown
in Fig. 3. The approach was developed in [29–31] that also
showed a modest increase in axial resolution of 0.4k for a
gain in signal-to-noise ratio of 10 dB using the modified
chirp scheme.

The two approaches can be combined in SA imaging as
suggested in [32] to increase the penetration depth. Com-
pared to a conventional ultrasound image the improvement
in signal-to-noise ratio is [32]:

I snr ¼
MN t

N ct2

NRs

NRc

T p

T c

ð6Þ

where M is the number of emissions for the SA image, NRs

is the number of receive elements and Tp is the duration of
the chirp. For the conventional image Nct elements are used
in transmit for a pulse of duration Tc seconds and NRc ele-
ments are beamformed in reception. Using the parameters
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M = 96, Nt = 33, Nct = 64, NRs = 128, NRc = 64, Tp =
20 ls, Tc = 0.29 ls for a 7 MHz system theoretically gives
a gain of 17 dB. The actual measurement is shown in
Fig. 4 and the calculated gain in Fig. 5. The increase in pen-
etration depth is roughly 4 cm or a 40% gain. An improved
focusing scheme has increased the gain by up to 6 dB and
further increased the penetration depth [33].

5. Equipment and implementation

The data acquisition in SA imaging is radically different
from a normal ultrasound system since data have to be
stored for all receiving channels and for a number of emis-
sions. Experiments with SA imaging must, thus, be con-
ducted with dedicated equipment, and only few research
groups have access to such systems as no commercial SA
research systems are available.

We have developed the remotely accessible software con-
figurable multichannel ultrasound sampling (RASMUS)
system specifically tailored for acquiring SA images
[34,35]. The system houses 128 transmitter channels that
can send arbitrary coded signals with a sampling frequency
of 40 MHz and a precision of 12 bits. The coded signals can
be different from emission to emission and from channel to
channel. It also houses 64 receivers that sample at 40 MHz
and 12 bits. They are connected to 1-to-2 multiplexers, so
that 128 elements can be sampled over two pulse emissions.
The receivers each have associated 256 Mbytes of RAM
and can, therefore, sample continuously for more than 3 s

to cover a number of heart cycles. The total RAM in the
system is more than 24 Gbytes and more than 72 large
FPGAs can be used for processing the data [35]. All conven-
tional ultrasound imaging methods can be implemented,
but real-time SA imaging is not possible. The data are here
stored in the RAM and later processed on a Linux cluster.
All the measurements presented in this paper are made with
the RASMUS system. A photo of the system and one recei-
ver board for 16 channels is shown in Fig. 6.

6. Flow estimation

In SA imaging, it is possible to focus the received data in
any direction and in any order. It does not have to be along
the direction of the emitted beam, since the emission is
spherical and illuminates the full region of interest. It is,
thus, possible to track motion of objects in any direction.
This can be used to devise a full vector velocity imaging
system.

Conventional ultrasound velocity systems estimate the
velocity by finding the shift in position of the scatterers
over time [22]. This is done by acquiring lines from the
same direction 8 to 16 times and then correlate the data
to find the shift in position between lines as either a phase
shift [36] or as a time shift [37]. Dividing the spatial shift by
the time then gives the velocity. The methods only find the
velocity along the ultrasound direction, the standard devi-
ation is often high, and the frame rate is lowered by the
number of emissions per direction.

–10 –5 0 5 10
–1

–0.5

0

0.5

Time [μs] 

A
m

pl
itu

de
 [n

or
m

al
iz

ed
]

Linear FM Signal

–10 –5 0 5 10
–1

–0.5

0

0.5

1

Time [μs] 

Compression Filter

–10 –8 –6 –4 –2 0 2 4 6 8 10

–100

–80

–60

–40

–20

0

Time [μs] 

A
m

pl
itu

de
 [d

B
]

Compression Output

Modified

Conventional

Fig. 3. Top left: Modified linear FM signal with a 7 MHz center frequency and 7 MHz bandwidth. A Tukey window with a duration of 10% has been
applied. Top right: Modified compression filter using a Chebychev window with 70 dB relative side-lobe attenuation. Bottom: Compression output for the
conventional FM signal (dashed) and the modified FM signal (solid). The effect of a linear array transducer has been introduced in the compression
outputs (from [32]).

J.A. Jensen et al. / Ultrasonics 44 (2006) e5–e15 e9



In SA imaging, the received data can be focused along
the direction of the flow as shown in Fig. 7. A short
sequence of emissions of M = 4–8 is used and the high res-
olution image lines y(x 0) are then focused along the flow
direction x 0. A velocity~v results in a displacement between
high resolution images of

Dx0 ¼ j~vjMT prf ð7Þ
where Tprf is the time between emissions. Data for the first
high resolution image line is y1(x 0) and the next high reso-
lution image line is y2(x 0) = y1(x 0 � Dx 0). Cross-correlating
the two lines gives a peak at Dx 0 and dividing by MTprf

then yields the true velocity magnitude j~vj. This can be
done in any direction, also transverse to the normal ultra-
sound direction of propagation, and the correct velocity
magnitude can, therefore, be found [38,39].

The approach has been investigated using a re-circulat-
ing flow rig. A 7 MHz linear array with 128 elements was
used together with the RASMUS system. A sequence with
8 emissions, using 11 elements and a 20 ls chirp was
employed. The flow estimation was performed for 128

emissions and the flow profiles for a fully transverse flow
is shown in Fig. 8. The relative standard deviation is
1.2% over the full profile, where a normal system would
show a velocity of 0. At 60�, the relative standard deviation
is 0.36% [38]. The 128 emissions can also be used for mak-
ing a full color flow image as shown in Fig. 9 for the flow
rig and in vivo for the carotid artery and jugular vein in
Fig. 10. The estimates are shown without any averaging
or image processing as is used in commercial scanners.

The advantages of the approach is that the velocity can
be accurately found in any direction, and that the color
flow imaging can be done very fast. Only 128 emissions
are needed, where a normal system would need roughly
800 for 100 image directions. The data is also continuously
available for all image directions and the velocity can be
estimated for as many emissions as the velocity can be
assumed constant. The continuous data also makes it easier
to perform stationary echo canceling to separate tissue and
blood signals, since filters can have any length and initial-
ization can be neglected.

The flow angle must be known before beamforming in
the flow direction, and this was in the previous examples
estimated from the B-mode image. It can, however, also
be estimated from the actual data. For the actual direction
the correlation of the data y1(x 0) and y2(x 0) is highest. For
other directions the correlation will drop, since the veloci-
ties along that line are different due to the velocity profile
of the blood [22]. Calculating the maximum normalized
correlation as a function of angle as in [40], thus, gives
an index from which the maximum determines the angle
as shown in Fig. 11. The function here has a peak at the
correct value of 90�. The angle estimates for the profiles
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shown in Fig. 9 are shown in Fig. 12. The mean value is
90.0003� and the standard deviation is 1.32� [40]. The
resulting color flow image with arrows indicating direction
and magnitude is shown in Fig. 13.

7. Motion compensation

The accurate velocity estimation can also be used for
compensating for tissue motion during the SA acquisi-

tion process. High quality SA images will often take
up to 100 emissions and high tissue velocities will
degrade the image quality since the individual low reso-
lution images are not summed in phase. The B-mode
sequence can then be inter-spaced with a flow sequence
and the tissue velocity can be estimated from this data.
Knowing the velocity is then used for correcting the
position of the low resolution images that then can be
summed in phase. This was suggested in [32,25], where

Fig. 6. Photos of the RASMUS scanner (left) with one of the 8 channel receiver boards. The digital part of the system is shown with the 64 receivers in the
top cabinet, the 128 transmitters in the middle, and the analog power supplies on the bottom. The analog front-end and transducer plug are at the other
side of the 19 in. racks. (from [35]).
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is was shown that the scheme removes the motion arti-
facts. Other motion compensation schemes have been
studied in [17,19,25].

8. Clinical results

From the previous sections, it can be seen that SA imag-
ing has a large array of advantages compared to conven-
tional ultrasound imaging. It is, however, not clear
whether these advantages also translate to the clinical
image, and it is, therefore, important to conduct pre-clinical
trials to realistically study the performance of SA systems.
This can be done with the RASMUS system described in
Section 5. It is here possible to acquire in vivo real-time data
and then make off-line processing for finding the clinical
performance. This has been done in [41,42], where the sys-
tem was programmed to acquire both a conventional con-
vex array image and a SA image. The sequences were
acquired interleaved to have the same region of interest,
transducer, and measurement system at the same time.
The only change is, thus, the imaging method. An example
of such images are shown in Fig. 14 for the liver and right
kidney. Seven human volunteers were scanned at two posi-
tions for both SA and conventional imaging yielding 28 vid-
eos. The sequences were presented to three experienced
medical doctors in a double blinded experiment and they
were asked to evaluate the images in terms of penetration
depth and relative performance between the two images.

The clinical evaluation showed a minute (0.48 cm) but
significant (P = 0.008) increase in penetration depth using
synthetic aperture with coded excitation. Image quality
evaluation showed highly significant (P < 0.001) improve-
ment in SA images compared to conventional images,
which was also expected by the authors due to the apparent
improved resolution throughout the SA images.

9. Advanced coded imaging

In the approaches shown in this paper only a single emis-
sion center is active at the same time. This limits the emitted
energy and the amount of information acquired per emis-
sion. It is quite inexpensive to make a transmitter compared
to a receiver, and it is, therefore, an advantage to use several
emissions simultaneously. Several authors have addressed
this problem. Hadamard encoding was suggested in [15]
to spatially encode the waveforms, where the Hadamard
matrix is multiplied onto the waveforms for the multiple
transmissions for a number of transmissions. The Hadam-
ard matrix can also be used for decoding the waveforms,
provided the object under investigation is stationary.

This problems was solved in the spread spectrum
approach suggested in [43,44]. Here each transmitter is
assigned a narrow frequency band. The signals for the indi-
vidual sources can then be separated using matched filters
provided that the bands are disjoint. The high resolution
image can then be made by repeating the procedure for
all frequency bands for all emitters and then combine all
the received signals after filtration. The approach can be
used for flow estimation, since the separation is not done
over a number of emissions [44].

Methods for even doing single excitation imaging has
also be suggested by a number of authors [45–49] and the
research fields is still very active. It can potentially lead
to a higher penetration and more precise flow images, if
the problems with the, e.g., image quality, intensity levels,
and computational load can be solved.

10. Summary

This paper has given examples of how medical SA ultra-
sound imaging can be acquired and processed. It has been

Fig. 14. Examples in vivo images. Left part is the conventional and right is the STA image showing the longitudinal section of right liver lobe showing
cross-sections of hepatic vein branches, longitudinal section of a portal a vein branch (upper left part), the kidney, and diaphragm at the bottom.
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shown that problems with penetration depth, flow, and
motion can be solved, and that high quality in vivo SA
images can be acquired. It has been demonstrated in
pre-clinical studies on human volunteers that the SA image
resolution and penetration depth are larger than for con-
ventional ultrasound images. Further, the data can be used
for vectorial velocity estimation, where both direction and
magnitude of the flow vectors can be determined in any
direction with a relative standard deviation of a few percent
making it possible to construct quantitative SA vector flow
systems.
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[23] M. Karaman, A. Atalar, H. Köymen, VLSI circuits for adaptive
digital beamforming in ultrasound imaging, IEEE Trans. Med. Imag.
12 (1993) 711–720.

[24] B.G. Tomov, J.A. Jensen, Compact implementation of dynamic
receive apodization in ultrasound scanners. in: Proceedings of the
SPIE – Medical Imaging, 2004, pp. 260–271.

[25] S.I. Nikolov, Synthetic aperture tissue and flow ultrasound imaging,
PhD Thesis, Ørsted. DTU, Technical University of Denmark, 2800,
Lyngby, Denmark, 2001.

[26] Y. Takeuchi, An investigation of a spread energy method for medical
ultrasound systems – part one: theory and investigations, Ultrasonics
(1979) pp. 175–182.

[27] M. O’Donnell, Coded excitation system for improving the penetra-
tion of real-time phased-array imaging systems, IEEE Trans. Ultra-
son. Ferroelec. Freq. Contr. 39 (1992) 341–351.

[28] M.I. Skolnik, Introduction to Radar Systems, McGraw-Hill, New
York, 1980.

[29] T. Misaridis, Ultrasound imaging using coded signals, PhD Thesis,
Ørsted. DTU, Technical University of Denmark, Lyngby, Denmark,
2001.

[30] T.X. Misaridis, K. Gammelmark, C.H. Jørgensen, N. Lindberg, A.H.
Thomsen, M.H. Pedersen, J.A. Jensen, Potential of coded excitation
in medical ultrasound imaging, Ultrasonics 38 (2000) 183–189.

[31] T. Misaridis, J.A. Jensen, Use of modulated excitation signals in
ultrasound. Part I: basic concepts and expected benefits, IEEE Trans.
Ultrason. Ferroelec. Freq. Contr. (2005) 192–207.

[32] K.L. Gammelmark, J.A. Jensen, Multielement synthetic transmit
aperture imaging using temporal encoding, IEEE Trans. Med. Imag.
22 (4) (2003) 552–563.

[33] K. Gammelmark, Improving the Image Quality of Synthetic Transmit
Aperture Ultrasound Images, PhD Thesis, Ørsted. DTU, Technical
University of Denmark, 2800, Lyngby, Denmark, 2004.

[34] J.A. Jensen, O. Holm, L.J. Jensen, H. Bendsen, H.M. Pedersen, K.
Salomonsen, J. Hansen, S. Nikolov, Experimental ultrasound system
for real-time synthetic imaging. in: Proceedings of the IEEE Ultra-
sonic Symposium, vol. 2, 1999, pp. 1595–1599.

[35] J.A. Jensen, O. Holm, L.J. Jensen, H. Bendsen, S.I. Nikolov, B.G.
Tomov, P. Munk, M. Hansen, K. Salomonsen, J. Hansen, K.
Gormsen, H.M. Pedersen, K.L. Gammelmark, Ultrasound research
scanner for real-time synthetic aperture image acquisition, IEEE
Trans. Ultrason. Ferroelec. Freq. Contr. 52 (5) (2005).

[36] C. Kasai, K. Namekawa, A. Koyano, R. Omoto, Real-time two-
dimensional blood flow imaging using an autocorrelation technique,
IEEE Trans. Son. Ultrason. 32 (1985) 458–463.
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Estimation of High Velocities in
Synthetic-Aperture Imaging—Part I: Theory

Jørgen Arendt Jensen , Fellow, IEEE

Abstract— This paper describes a new pulse sequence design
and estimation approach, which can increase the maximum
detectable velocity in synthetic-aperture (SA) velocity imaging.
In SA, N spherical or plane waves are emitted, and the
sequence is repeated continuously. The N emissions are combined
to form a high-resolution image (HRI). Correlation of HRIs
is employed to estimate velocity, and the combination of N
emissions lowers the effective pulse repetition frequency by N.
Interleaving emission sequences can increase the effective pulse
repetition frequency to the actual pulse repetition frequency,
thereby increasing the maximum detectable velocity by a factor
of N. This makes it possible to use longer sequences with better
focusing properties. It can also increase the possible interrogation
depth for vessels with large velocities. A new cross-correlation
vector flow estimator is also presented, which can further increase
the maximum detectable velocity by a factor of 3. It is based
on transverse oscillation (TO), a preprocessing stage, and cross-
correlation of signals beamformed orthogonal to the ultrasound
propagation direction. The estimator is self-calibrating without
estimating the lateral TO wavelength. This paper develops the
theory behind the two methods. The performance is demonstrated
in the accompanying paper for convex and phased array probes
connected to the synthetic aperture real-time ultrasound system
scanner for parabolic flow for both conventional and SA imaging.

Index Terms— Synthetic aperture, ultrasound imaging, velocity
estimation.

I. INTRODUCTION

SYNTHETIC aperture (SA) velocity estimation was intro-
duced in 2001 [1], [2]. Here, a repeated sequence of

diverging emissions was used for reconstructing a continuous
imaging sequence usable for velocity and vector velocity
estimation. This resulted in highly accurate velocity estimates
using directional beamforming [3] with relative standard devi-
ations (SDs) down to 0.36% and very fast in vivo velocity
images [2]. Only 24 emissions were used for imaging the
carotid artery potentially yielding frame rates up to 10 kHz at
a pulse repetition frequency fprf of 24 kHz. Such continuous
sequences can also be used with plane wave imaging, and
the possibility of infinite observation times has been used to
estimate very slow flow in the brain [4], [5] and to derive
functional brain activity images. The main possibilities and
advantages have been demonstrated by a number of research
groups and are described in review papers [6]–[8].
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There is, however, one disadvantage of SA as imaging
sequences with a number of emissions have to be acquired to
attain a high resolution and low sidelobes. The effective pulse
repetition frequency fprf,eff is the emissions pulse repetition
frequency fprf divided by the emissions sequence length N ,
i.e., fprf,eff = fprf/N . The highest velocity detectable is
directly proportional to fprf,eff and is, therefore, reduced by
a factor N , which can lead to erroneous estimates for large
velocities in the major arteries or in the heart. The solution
is often to employ a very high fprf, which generates massive
amounts of data, precludes the investigation of deep vessels,
and often creates probe temperature problems and limitations
on the emitted fields.

Several factors influence the resolution limit and contrast
for images, which also affects the velocity range possible to
estimate. The resolution is determined by the F-number of
the system, which is determined by the width of the aper-
ture or rather the number of elements combined in reception,
and the spread of the emissions in either angle for plane
wave emissions or space for spherical emissions. Having a
high number of emissions and receiving elements yields a
good contrast and resolution as demonstrated in [9] for plane
waves and in [10] for spherical waves. A long sequence will,
however, reduce the effective fprf,eff, and the effective frame
rate of fully independent images is also reduced by a factor of
N . In velocity imaging, the maximum detectable velocity is
usually proportional to λ fprf/4 for phase estimation methods
before aliasing takes place [11], where λ is the wavelength.
The maximum detectable velocity is, thus, also reduced by
N , and obtaining both a high contrast for separating out
adjacent vessels and a high-velocity range seems unbreakable
in SA velocity imaging. A choice must, therefore, be made
between looking at low-velocity flow in small vessels with
a long sequence or having a shorter sequence for estimating
fast flow as described in [12]. One approach to break the
aliasing limit is to use cross-correlation methods [13]–[15]
rather than the autocorrelation method [16] limited to motions
within ±λ/2. The largest velocities are, however, still limited
by rapid decorrelation of the data. An other approach is to
use a staggered pulse repetition method for ultrafast imaging
of high velocities [17], which is restricted to be used for
antialiasing in phase shift estimators.

This paper describes two methods for increasing the aliasing
limit to obtain both a high contrast using a long sequence
and, at the same time, obtain a high aliasing limit. The first
improvement is a new sequence design presented in Section II,

0885-3010 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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Fig. 1. Visualization of SAI. Spherical waves are emitted from a number of
elements and the scattered signals are received on all the elements. An LRI is
beamformed for each emission, and they are combined to yield an HRI with
dynamic focusing in both transmit and receive (from [1]).

which maintains the highest possible fprf,eff equal to fprf.
This maintains a high peak detectable velocity with a reduced
amount of data and makes interrogation of deep-lying vessels
with a high peak velocity possible. The approach can be
combined with any velocity estimator.

Second, a new estimator for the transverse oscillation (TO)
approach is introduced [18]–[20], where cross-correlation is
used. It can increase the detectable maximum velocity by a
factor of 3 breaking the aliasing limit as demonstrated in
the accompanying paper [21]. The lateral oscillation period
can also be controlled dynamically during receive processing
to increase or lower it depending on the flow velocities
investigated. The estimator is derived in Section IV.

The accompanying paper [21] presents the Field II sim-
ulations [22], [23] and measurements using the synthetic
aperture real-time ultrasound system (SARUS) experimental
scanner [24] for revealing the performance of the methods.

II. SYNTHETIC-APERTURE FLOW IMAGING

SA imaging (SAI) insonifies a whole region of interest using
spherical waves [6], [25] as illustrated in Fig. 1. A virtual
source in the form of a spherical or plane wave is emitted. The
spherical virtual source can have its origin behind or in front
of the array and can use one or a number of elements com-
bined [26]–[28]. A plane emission is defined by its tilt angle
compared to the array, and all elements are usually needed in
transmit. A low-resolution image (LRI), L(1), is beamformed
after each emission, and this is dynamically focused during the
receive beamforming based on the placement of the transmit-
ted wave. A new wave is then emitted and the received data
beamformed to yield L(2). The process is repeated for all N
emissions in the sequence and all LRIs are combined to yield
a high-resolution image (HRI), H (N), which is dynamically
focused in both transmit and receive. The image is, thus,
reconstructed over a number of emissions, and will, therefore,
be affected by motion of the interrogated volume.

Fig. 2. SA sequence used for flow estimation using a two-emission sequence.
Emitting virtual sources (top row). PSF for the LRIs (middle row). Resulting
HRIs (bottom row). Similar HRIs can be correlated to estimate the velocity
and the repeated sequence yields continuous data for the whole image
(from [2]).

This is depicted in Fig. 2, which shows the point spread
functions (PSFs) for the individual LRIs and the corresponding
HRIs for a short two-emission sequence. The scatterer imaged
is moving toward the probe by a distance of �z = vz Tprf =
vz/ fprf between pulse emissions, where vz is the axial velocity.
The PSFs for the LRI are tilted toward the emitting source
and are, therefore, different for each LRI in the sequence.
The combined HRIs are also different, but it should be noted
that the only difference for the same combination of LRIs
L(n−3) + L(n−2) = H (n−2) and L(n−1) + L(n) = H (n) is the
shift in position. These two HRIs can, therefore, be correlated
to find the motion, and this is the key feature used in SA and
plane wave flow imaging as was noticed and introduced by
Nikolov and Jensen [1], [2] and Nikolov [25].

This ordering of the processing yields continuous data
everywhere in the image, which makes it possible to track
targets continuously and have very long echo canceling filters
and averaging over as long time as the correlation functions are
coherent [2], [29], [30]. The velocity can, thus, be found from
any of the methods mentioned in [31]. Beamforming can also
be performed in any direction and the flow can thus be tracked
to minimize decorrelation effects from velocity gradients.

The standard method for SA flow imaging is shown
in Fig. 3. A single HRI is created from the same colored
block of LRIs and the correlation for finding velocities is
between HRIs with a time difference of TprfN . The averaging
is across a number of HRI correlations to yield a low SD
velocity estimate.

III. EMISSION SEQUENCE DESIGN

The largest velocity detectable for both spherical and plane
wave synthetic aperture focusing (SAFs) vz,max is determined
by the time interval between the two received signals that are
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Fig. 3. Traditional SA sequence for velocity estimation. HRIs are created in blocks making the effective fprf,eff low. LRI 1(2) denotes LRI for emission
1 in high-resolution sequence 2 (first emission in the green block).

correlated and is for an autocorrelation (phase shift) estimator
given as

vz,max = λ

4
fprf,eff. (1)

Keeping fprf,eff high, thus, ensures the highest detectable
velocity. Ideally, the emissions for velocity estimation should
be adjacent in time. This is precluded in a SAF system with
a sequence length N so fprf,eff = fprf/N . The sequence
should, therefore, be modified, so that HRIs are only one
emission apart, at the same time as the sequence length
N is maintained. This can be accomplished by interleaving
two sequence. The normal sequence is given by

v
(1)
1 v

(1)
2 v

(1)
3 v

(1)
4 . . . , v

(1)
N , . . .

v
(2)
1 v

(2)
2 v

(2)
3 v

(2)
4 . . . , v

(2)
N

where v
(1)
x is velocity emission sequence number 1 for spher-

ical or plane wave source x . The source is here a virtual
ultrasound source emission [27] or a plane wave in a given
direction. Data are then beamformed for all emissions v

(1)
1

to v
(1)
N to create high-resolution data H (1), and for emissions

v
(2)
1 to v

(2)
N to create high-resolution data H (2). The two high-

resolution data sets are then correlated to estimate the velocity
as shown in Fig. 3.

The suggested new sequence interleaves two sequences as
shown in Fig. 4

v
(1)
1 v

(2)
1 v

(1)
2 v

(2)
2 . . . , v

(1)
N , v

(2)
N .

The two high-resolution data sets are beamformed, but H (1)

and H (2) are now only one pulse emission apart, and this
yields a correlation estimate with the highest possible max-
imum velocity for both the axial and lateral components.
The correlation functions can be averaged over a number of

correlation pairs only limited by the acceleration of the flow.
The length of averaging is limited by

aT < σv (2)

where T is the averaging interval, a is acceleration, and σv is
the SD on the estimate, which generally is dependent on T .
This states that the correlation functions should be averaged as
long as the peak position has not moved beyond the precision
of the estimate. After this limit, the correlation will start to
degrade.

This new sequence gives the optimal data for high-velocity
estimation due to the shortest temporal distance between the
high-resolution data. It breaks the link between sequence
length N and maximum detectable velocity, and it can include
long sequences with an optimal resolution and sidelobe level
for detecting small vessels. The data sequence is continuous
and can, therefore, be averaged over as long time as needed.

It can also be used for recursive SAI [32] as shown in Fig. 5.
Here, a new HRI is created after each emission regardless
of the imaging length for the fastest possible imaging. The
notation HRI 2(2) 3(2) 4(2) 1(4) indicates which set of
emission is used. The first number is the emission (virtual
source) from 1 to N in the sequence. The second number in
parentheses is the sequence number used. Therefore, 3(2) is
emission number 3 in the second sequence indicated by the
light green color. It should be ensured that the same sequence
of LRIs is used due to the distortion of the PSF, but after
correlation, the functions are similar and can be averaged to
increase precision.

The PSF will be affected by the velocity and, thus,
the motion between emissions. This will result in a decorrela-
tion of the LRIs, which affects the PSFs as described in [33].
This results in a reduction in SNR and higher sidelobes, which
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Fig. 4. Interleaved SA sequence where LRIs are repeated to minimize the distance between HRIs. The same colored LRIs are summed to yield one HRI.
The effective fprf,eff is equal to the highest possible value due to the interleaving. Correlations in the blue boxes yield the same correlation function, which
are then averaged to improve precision.

affects the velocity estimates. The length of the SA sequence
will, therefore, be limited by the time over which the LRIs
can be considered correlated. The correlation is affected by
the interleaving as the sequence length is essentially doubled,
which can lead to a drop in amplitude compared to a nonin-
terleaved sequence. It has, however, been shown that the PSF
can be fully recovered, if the velocity vector can be reliably
estimated [33], [34], which is more likely for an interleaved
sequence. The interleaving can also affect the variance of the
estimates, as the length for acquiring data is doubled, thus
reducing the averaging in half. The averaging time duration
is restricted by the acceleration as given in (2), but often the
estimates are more influenced by the echo canceling filter than
limited by the averaging duration.

A. Echo Canceling

Echo canceling can be performed on the HRIs using the
standard methods for removing stationary tissue signals [11].
It is benefited from having continuous data everywhere in the
image [6], and a simple approach is to take the mean value
across all HRIs and subtract this from the individual HRIs
as used in the accompanying paper. Other more advanced
techniques based on, e.g., decompositions [29], [35]–[39] can
also be employed, when the continuous data are used as two
interleaved high-resolution sequences, if equidistant sampling
of the data is a requirement. Finite-impulse response (FIR)
and IIR filters can thereby be used, and the continuous data
remove limitations from the initial response of the filters.
Singular value decomposition (SVD) and other decomposition

approaches can easily be adapted to handle the interleaving in
one processing stage.

IV. DIRECTIONAL TRANSVERSE OSCILLATION

USING CROSS-CORRELATION

The new sequence can be employed with any type of veloc-
ity estimation scheme based on correlation functions includ-
ing autocorrelation [16], [40], cross-correlation [13], speckle
tracking [15], directional beamforming [3], and TO [18].
TO introduces a lateral oscillation in the ultrasound field by
employing a two-peak apodization waveform during receive
beam formation. It can be optimized by focusing a direc-
tional signal transverse to the ultrasound propagation direc-
tion [directional transverse oscillation (DTO)] [41]. A Hilbert
transform along this line is calculated to yield a complex
signal usable for finding the sign of the transverse velocity. An
autocorrelation estimator has been used to find the transverse
velocity. This is limited to shifts less than a quarter lateral
wavelength, and the maximum velocity is given by [11]

vx,max = λx

4
fprf (3)

where λx is the lateral wavelength. This restriction on maxi-
mum velocity coming from employment of phase shift estima-
tion can be alleviated by using a cross-correlation estimator,
where the maximum velocity is only limited by the decorre-
lation of the involved signals [11], [13]. This can be used on
the directional signal but at beam-to-flow angles different from
90◦, a significant oscillation from the axial motion will intro-
duce a detrimental decorrelation. It can be seen from a model
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Fig. 5. Processing scheme for recursive SAF, where a new HRI is created
after each pulse emission. HRI 2(2) 3(2) 4(2) 1(4) indicates which set of
emission are used. The first number is the emission (virtual source) and
the second number in parentheses is the sequence number used. Therefore,
3(2) is emission number 3 in the second sequence indicated by the light green
color.

of the received signal. The received signal is x(n, k, i) and
its Hilbert transform along k is y(n, k, i) = Hk{x(n, k, i)},
where Hk denotes the Hilbert transform along k. Here, n is RF
sample number, k is sample along the directional signal, and
i is emission number. The complex combined signal is [41]

rsq(n, k, i) = x(n, k, i) + jHk{x(n, k, i)}
= x(n, k, i) + j y(n, k, i). (4)

The received signals are Hilbert transformed in the temporal
direction n, and a new directional beamformed signal formed
rsqh(n, k, i) as

rsqh(n, k, i) = Hn{x(n, k, i)} + jHn{y(n, k, i)}. (5)

The signals can be modeled as shown in the equations
at the bottom of the page, when assuming monochromatic
signals [19], [41]. Here, c is the speed of sound, �x is the
sampling interval along the lateral signal, a is the scattered

amplitude, fs is the temporal sampling frequency, �z = c/ fs ,
and Tprf is the time between pulse emissions. The interrogation
depth is d , and the two frequencies received from the axial and
lateral motions are given by

f p = 2vz

c
f0 = 2vz

λ
, fx = vx

λx
. (6)

Two new signals are then formed from

r1(n, k, i) = rsq(n, k, i) + jrsqh(n, k, i)

r2(n, k, i) = rsq(n, k, i) − jrsqh(n, k, i).

The combined signals can be written as

r1(n, k, i) = a · exp

(
j
2π

λ
(2vzi Tprf − n�z − 2d)

)

× exp

(
j
2π

λx
(vx i Tprf − k�x)

)
(7)

and

r2(n, k, i) = a · exp

(
j
2π

λ
(2vzi Tprf − n�z − 2d)

)

× exp

(
− j

2π

λx
(vx i Tprf − k�x)

)
. (8)

Both r1 and r2 are influenced by the lateral and axial velocities,
and this has previously been separated out using the fourth-
order autocorrelation estimators derived in [19] and [41]. For
a purely lateral velocity, there is no influence from the axial
velocity, and the signals can be cross-correlated to find the
spatial shift between two emissions and thereby vx . For other
angles, the estimation process will be distorted to not yield the
correct vx . This is, for example, addressed in directional beam-
forming [42], [43], which noted the same problem with the
transverse correlation approach suggested by Bonnefous [44].

The axial velocity component can be removed by multi-
plying the two signals as suggested by Anderson [45]. This
results in the signal

rmult(n, k, i) = r∗
1 (n, k, i)r2(n, k, i)

= a · exp

(
− j

2π

λ
(2vzi Tprf − n�z − 2d)

)

× exp

(
− j

2π

λx
(vx i Tprf − k�x)

)

× exp

(
j
2π

λ
(2vzi Tprf − n�z − 2d)

)

× exp

(
− j

2π

λx
(vx i Tprf − k�x)

)
,

= a × exp

(
− j

4π

λx
(vx i Tprf − k�x)

)
(9)

rsq(n, k, i) = a
1

2

(
exp

(
j2π

((
vx

λx
+ 2vz

λ

)
i Tprf − k�x

λx
− f0

n

fs
+ 2d

c
f0

))

+ exp

(
j2π

((
vx

λx
− 2vz

λ

)
i Tprf − k�x

λx
− f0

n

fs
+ 2d

c
f0

)))

rsqh(n, k, i) = a
1

2 j

(
exp

(
( j2π

((
vx

λx
+ 2vz

λ

)
i Tprf − k�x

λx
− f0

n

fs
+ 2d

c
f0

))

− exp

(
j2π

((
vx

λx
− 2vz

λ

)
i Tprf − k�x

λx
− f0

n

fs
+ 2d

c
f0

)))
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where r∗
1 () denotes the complex conjugate. The multiplication,

thus, removes the influence from the axial velocity, and the
resulting signals can be directly correlated to yield the velocity
as

R12(n, m) =
Ne∑

i=1

Ns∑

k=1

r∗
mult(n, k, i)rmult(n, k + m, i + 1)

=
Ne∑

i=1

Ns∑

k=1

a exp

(
j
4π

λx

(
vx i Tprf − k�x

))

a exp

(
− j

4π

λx
(vx (i + 1)Tprf − (k + m)�x)

)

= a2 exp

(
j2

4π

λx
(vx Tprf − m�x)

)
(10)

where Ne is the number of emissions, and Ns is the number
of samples in the directional line. This correlation function
has a global maximum for m p = vx Tprf/�x , when a pulsed
signal is used. The maximum can be found from the absolute
value of the complex correlation function or from the real part
of R12(n, m), where the last method gives the most precise
determination. The peak value is found as an integer, which
limits the precision. It can be increased by using parabolic
interpolation by fitting a second-order polynomial to the three
points around the peak value. An interpolated peak value is
found in [46]

mint = m p − R̂12(m p + 1) − R̂12(m p − 1)

2(R̂12(m p + 1) − 2R̂12(m p) + R̂12(m p − 1))

(11)

to yield the interpolated estimate

v̂int = mint�x

Tprf
. (12)

Similar expressions can also be found for the axial cross-
correlation estimator.

This new estimator has a number of advantages over the
autocorrelation approach. Only knowledge of Tprf and �x
is needed to get quantitative results. No calibration estimate
of fx = 1/λx , thus, has to be found as in [41]. Further-
more, the velocity range is not restricted to spatial shifts
between −λx/2 and +λx/2 as cross-correlation estimators
have no inherent aliasing limit, apart from the decorrela-
tion of signals from transverse beam modulation. This can
potentially yield a much higher detectable velocity range,
with a reduced beamforming load compared to directional
beamforming [42], [43]. This estimator design can also
be used for making the transverse spectrum as described
in [47].

The cross-correlation limit is determined by the time over
which two received signals are correlated, which is determined
by the width of the PSF compared to the motion vx Tprf.
In SAF, the entire focusing is performed during the receive
processing, and this can be adapted to the velocity investi-
gated. The lateral oscillation wavelength can be increased by
changing the apodization function to have peaks closer to each
other on the virtual aperture for high velocities, or they can
be separated more to increase the lateral oscillation frequency

for low-velocity estimation. It is also possible to increase the
lateral oscillation frequency by using a two-peak apodization
in both transmit and receive focusing. An alternative approach
is to use full dynamic focusing and then create the lateral
oscillation in the frequency domain as suggested in [48]
and [49].

V. CONCLUSION

This paper has described two new methods for increasing
the maximum detectable velocity of SA velocity imaging using
spherical or plane waves. A new sequence design can increase
the velocity limit by a factor N equal to the sequence length,
and the new TO directional cross-correlation estimator can
break the aliasing limit. It also has a higher aliasing limit by
a factor 2–4 than for axial autocorrelation estimation, as the
lateral wavelength easily can be made two to four times larger
than the axial wavelength [18]. The employment of a cross-
correlation estimator instead of the autocorrelation approach
further adds a factor of 3 as experimentally shown in the
accompanying paper [21]. The combination of all these fea-
tures makes it possible to estimate lateral velocity components
6 N to 12 N times higher than for axial velocity components
in the previous SA velocity sequences. The approach described
in [3] used N = 8 and fprf = 3 kHz to estimate peak
velocities around 0.15 m/s using directional cross-correlation.
The aliasing limit for an autocorrelation system would be
0.04 m/s. The same setup could translate to a peak detectable
velocity of 4.6–9.2 m/s using the new scheme and estimator
at 3 MHz. Increasing fprf to 5 kHz for full cardiac imaging
could lead to velocity range above 10 m/s; enough to detect
jets from regurgitation in heart valves.

The interleaved approach is not restricted to use with the
new DTO cross-correlation estimator but can be used with any
of the current velocity estimators used for axial and vectorial
velocity estimations [8], [31] and still attain a factor of N
increase in maximum detectable velocity.

The accompanying paper [21] investigates the methods
using Field II simulations [22], [23] and measurements from
the SARUS experimental scanner [24]. It is demonstrated that
velocities of 0.5 m/s can be estimated for an fprf of 450 Hz,
which translates to 5.6 m/s at fprf = 5 kHz, and in certain
cases at fprf = 225 Hz, a velocity of 0.5 m/s could be
estimated corresponding to 11.2 m/s at 5 kHz.

The method still has the advantage of continuous data, and
the lowest velocity detectable is, therefore, only limited by the
duration over which the data can be acquired for the position
in the image. The velocity range, therefore, both cover high
velocities in the major arteries, at the same time, as low-
velocity flow in small vessels can be estimated from the same
data.
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5.1 Introduction: Blood Velocity Estimation Systems

This Chapter gives an introduction to velocity estimation in medical ultrasound, which is primarily used in cardio-
vascular imaging, but it can also be applied in e.g. strain imaging and tissue motion estimation. The Chapter gives
a brief introduction to the human circulation to establish the requirements on blood velocity estimation systems.
A simple model for the interaction between ultrasound and point scatterers is derived in Section 5.4 based on the
information about scattering from blood in Section 5.3. The model is used in the derivation of velocity estimators based
on the signal’s frequency content (Section 5.6), phase shift (Section 5.7), and time shift (Section 5.8). These Sections
should give a brief introduction to the function of the most prominent methods used in current commercial ultrasound
scanners. Newer and more experimental techniques are described in the Sections on vector velocity imaging, synthetic
aperture imaging and other applications in Sections 5.9 to 5.12.

The Chapter is necessarily brief in covering the many topics of this field, and the reader is referred to the more in-depth
treatment of the topics in [9, 40, 41, 42, 43] along with the references given in the text.

5.2 The human circulation

The major arteries and veins in the human circulation are shown in Fig. 5.1, and the dimensions are indicated in
Table 5.1. Their diameters span from cm to microns and the velocities from m/s to less than mm/s in the capillaries.
As illustrated, the vessel constantly curves and branches and repeatedly changes dimensions [44]. The blood flow
is pulsatile, and the velocity rapidly changes both magnitude and direction as can be seen from the large difference
between peak and mean velocities. In addition the peak Reynolds number is often above 2000, which indicates
disturbed or turbulent flow in parts of the cardiac cycle.

All of these factors should be considered when devising a system for measuring blood the velocity in the human
circulation. Foremost it must be a fast measurement system with 1 – 20 ms temporal resolution to follow the changes
in velocity due to the acceleration from the pulsation. It should also have sub-millimeter spatial resolution in order
to see changes in flow over space and visualize small vessels. A real-time system is also beneficial, since the flow
patterns change rapidly, and it must be possible to quickly find the sites of flow. The system should ideally also be
capable of finding and visualizing flow in all directions, since turbulent flow and vortices exists throughout the human
circulation. Modern medical ultrasound systems can fulfill many of these demands, and the remaining part of this
Chapter describes the physics and signal processing needed to perform velocity estimation along the ultrasound beam
and in other directions.

5.3 Ultrasound scattering from blood

The constituents of blood are shown in Table 5.2. The most prominent part is the erythrocytes (red blood cells), where
a mm3 of blood contains roughly 5 million cells. The resolution of ultrasound systems is at best on the order of the
cube of the wavelength λ3, which is given by λ = c/f0, where c is the speed of sound and f0 the center frequency.
For a 6 MHz system λ = 0.26 mm, which is much larger than a single cell. An ultrasound system, thus, only observes
a large, random collection of cells.

The scattering from a single point scatterer or small cell can be described by the differential scattering cross section,
σd. It is defined as the power scattered per unit solid angle at some angle Θs divided by the incident intensity [11, 51]:

σd(Θs) =
V 2
e π

2

λ4

[
κe − κ0

κ0
+
ρe − ρ0

ρe
cos Θs

]2

, (5.1)

where Ve is the volume of the scatterer, ρe is a small perturbation in density and κe in compressibility from their mean
values ρ0, κ0. This results in a scattered field as shown in Fig. 5.2, where the scattering is dependent on the angle. It
can, however, be seen that a signal is received in all directions.
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Table 5.1: Typical dimensions and flows of vessels in the human vascular system (data taken from [45, 46] and Table
adapted from [9]).

Internal Wall Young’s
diameter thickness Length modulus

Vessel cm cm cm N/m2 · 105

Ascending aorta 1.0 – 2.4 0.05 – 0.08 5 3 – 6
Descending aorta 0.8 – 1.8 0.05 – 0.08 20 3 – 6
Abdominal aorta 0.5 – 1.2 0.04 – 0.06 15 9 – 11
Femoral artery 0.2 – 0.8 0.02 – 0.06 10 9 – 12
Carotid artery 0.2 – 0.8 0.02 – 0.04 10 – 20 7 – 11
Arteriole 0.001 – 0.008 0.002 0.1 – 0.2
Capillary 0.0004 – 0.0008 0.0001 0.02 – 0.1
Inferior vena cava 0.6 – 1.5 0.01 – 0.02 20 – 40 0.4 – 1.0

Peak Mean Reynolds Pulse propaga-
velocity velocity number tion velocity

Vessel cm/s cm/s (peak) cm/s
Ascending aorta 20 – 290 10 – 40 4500 400 – 600
Descending aorta 25 – 250 10 – 40 3400 400 – 600
Abdominal aorta 50 – 60 8 – 20 1250 700 – 600
Femoral artery 100 – 120 10 – 15 1000 800 – 1030
Common Carotid artery (range) 68 – 171 19-59 600 – 1100
Common Carotid artery (mean) 108 39 600 – 1100
Arteriole 0.5 – 1.0 0.09
Capillary 0.02 – 0.17 0.001
Inferior vena cava 15 – 40 700 100 – 700

Mass Adiabatic
density compressibility Size Particles
g/cm3 10−12 cm/dyne µm per mm3

Erythrocytes 1.092 34.1 2× 7 5 · 106

Leukocytes - - 9 – 25 8 · 103

Platelets - - 2 – 4 250− 500 · 103

Plasma 1.021 40.9 - -
0.9% saline 1.005 44.3 - -

Table 5.2: Properties of the main components of blood. Data from [47, 48, 49, 50] and Table adapted from [9].
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The signal received by the ultrasound transducer is therefore independent of the orientation of the vessel and it can
be modeled as a random, Gaussian signal, as it emanates from a large collection of independent random scatterers.
This give rise to the speckle pattern seen in ultrasound images. The scattering is very weak, as the density and
compressibility perturbations are small compared to the surrounding tissue, and often the signal from blood is 20-40
dB lower than from the surrounding tissue. Vessels in an ultrasound image therefore appear black.

It should be noted that the signal received is random, but the same signal is received, if the experiment is repeated for
the exact same collection of scatterers. This is a very important feature of ultrasound blood velocity signals and is
heavily used in these systems, as will be clear in the following Sections. A small motion of the scatterers will therefore
yield a second signal highly correlated with the first signal, when the motion |v|Tprf is small compared to the beam
width, and the velocity gradient is small across the scatterer collection observed. Here |v| is velocity magnitude and
Tprf is the time between the measurements.

5.4 Ultrasound signals from flowing blood

The derivation of velocity estimation methods is based on a model of ultrasound interaction between the moving blood
and the ultrasound pulse. The model has to capture all the main features of the real received signal without unnecessary
features and complications. This section will present a simple model for this interaction, which can readily be used
for deriving new estimators and also give basic explanations for how to optimize the techniques. It can also be further
expanded to the two- and three-dimensional velocity estimation methods presented in Sections 5.9 and 5.10.

The scattering from blood emanates from a large collection of independent, small point scatterers as described in
Section 5.3. The one-dimensional received signal y(t) can therefore be modeled as:

y(t) = p(t) ∗ s(t), (5.2)

which is the convolution of the basic ultrasound pulse p(t) with the Gaussian, random scattering signal s(t). The
ultrasound pulse for flow estimation consists of a number of sinusoidal oscillations (Mp = 4− 8) at the transducer’s
center frequency, f0, convolved with the electro-mechanical impulse response of the transducer (from excitation volt-
age to pressure and from pressure to received voltage) [52]. Modern transducers are so broad band that a simple
approximation is given by

p(t) = g(t) sin(2πf0t), (5.3)

where the envelope g(t) is one from t = 0 to Mp/f0 and zero elsewhere.

For a single point scatterer, the scattering can be modeled as a δ-function and the received signal is

y1(t) = p(t) ∗ aδ
(
t− 2d

c

)
= ap

(
t− 2d

c

)
, (5.4)

where d is the distance to the point, c is the speed of sound (1540 m/s in tissue), and a is the scattering amplitude.
There is, thus, a propagation delay 2d/c between transmitting the signal and receiving the response. For a moving
scatterer this response will change as the scatterer moves farther away from the transducer. For a scatterer velocity of
vz = |v| cos θ in the axial direction, and a time between measurements of Tprf , the second received signal is

y2(t) = p(t) ∗ aδ
(
t− 2d

c
− 2vzTprf

c

)
= ap

(
t− 2d

c
− 2vzTprf

c

)
. (5.5)

Note that vzTprf = Tprf |v| cos θ is the distance the scatterer moved along the ultrasound beam direction, where θ is
the beam-to-flow angle. There is therefore an added delay of

ts =
2vz
c
Tprf (5.6)

before the second signal is received. This is directly proportional to the velocity of the moving scatterer, and by
determining this delay the axial velocity can directly be calculated. This can be achieved either through the phase shift
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estimator described in Section 5.7 or the time shift estimator in Section 5.8. Both estimators essentially just compare
or correlate two received signals and find the shift in position between the received responses.

Combining (5.3) and (5.5) gives a model for the received signal for a number of pulse emissions [53, 54]:

y(t, i) = ap(t− 2d

c
− i2vz

c
Tprf ) = ag(t− 2d

c
− its) sin(2πf0(t− 2d

c
− its)). (5.7)

Here i is the pulse emission number. For pulsed systems the received signal is measured at a single depth corresponding
to a fixed time tx relative to the pulse emission. This is performed by taking out one sample from each pulse emission
to create the sampled signal. To simplify things it can assumed that the pulse is long enough and the motion slow
enough, so that the pulse amplitude stays roughly constant during the observation time. The sampled signal can then
simply be written as

y(tx, i) = a sin(2πf0(tx −
2d

c
− its))

= −a sin(2π
2vz
c
f0iTprf − φx). (5.8)

Here φx = 2πf0( 2d
c − tx) is a fixed phase shift depending on the measurement depth. The sampling interval is Tprf

and the frequency of the sampled signal is

fp =
2vz
c
f0, (5.9)

which is directly proportional to the velocity. Thus, estimating the frequency of this sampled signal y(tx, i) can directly
reveal the axial velocity as described in the Section 5.6 on spectral velocity estimation. Often it is advantageous to
also sample the signal in the depth direction, and this gives

ys(n, i) = ag(n∆T − 2d

c
− its) sin(2πf0(n∆T − 2d

c
− its)), (5.10)

which is often employed for averaging along the depth direction. Here ∆T = 1/fs is the sampling interval and fs the
sampling frequency.

An illustration of the sampling process for a single moving scatterer is shown in Fig. 5.3, where the individual received
signals are shown on the left graph. The scatterer is moving away from the transducer, and the time between emission
and reception of the signal increases. A single sample is taken out for each received signal at the position of the red
line. The resulting sampled signal is shown on the right graph, where the basic emitted pulse can be recognized. A low
velocity will yield a long pulse and hence a low frequency of the received signal as indicated by (5.9). A high velocity
will compress the signal and thereby give a high frequency. The velocity can be found by three different methods. A
Fourier transform can be applied on the signal in the right graph to find the frequency as described in Section 5.6. The
phase shift can be determined between the received signals. This is described in Section 5.7. The time shift can be
found by correlating consecutive received signals, i.e. cross-correlating received signals in the left graph as described
in Section 5.8.

The signal model can also be expanded to include a collection of scatterers moving at the same velocity

y(t, i) = p(t) ∗ s(t− its − iTprf ) = p(t− its − iTprf ) ∗ s(t) = p(t− its) ∗ s(t). (5.11)

as the same pulse is emitted every time. Using superposition this can just be seen as a summation of individual
scatterers moving at their velocity and the model and observations made above can readily be applied.

5.4.1 Is it the Doppler effect?

The ultrasound systems for measuring velocity are often called Doppler systems implying that they rely on the Doppler
shift to find the velocity. It is debatable whether this is really true. The Doppler effect can be described as a frequency
shift on the received signal. The received signal can be written as:

yD(t) = a sin(2π(1 +
2vz
c

)f0t) (5.12)
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Figure 5.3: Received signals from a single scatterer moving away from the transducer. The solid red line in the left
graph indicates the sampling instance for the samples show on the right graph.

for a simple continuous wave source. Here the received frequency is scaled by (1+2vz/c). There is, thus, a frequency
difference of fD = 2vz

c f0 between the emitted and received signal. This is easy to determine for a continuous wave
(CW) source and is used in CW systems, but it is extremely difficult for a pulsed source. Primarily, the shift in
frequency is very small, on the order of 1/1000 of the emitted frequency. The shift is therefore minute compared to
the bandwidth of the signal, which is roughly B = f0/Mp, Mp being the number of cycles emitted. Secondly, finding
this frequency shift assumes that the signal is not affected by other physical effects that shift the mean frequency of the
received signal. This is not true in medical ultrasound as the Rayleigh scattering from blood is frequency dependent,
and the dispersive attenuation in tissue is quite strong. Even for moderate tissue depths it can span from ten to hundreds
of kilohertz of shift in the mean frequency of the received signal, thus, obscuring the Doppler shift [9]. This shift will
be different and unknown from patient to patient and would therefore greatly influence the accuracy of the Doppler
shift estimation. The Doppler effect is therefore not a reliable estimator of velocity and no pulsed system relies on
this effect. Consequently it was not included in the model given in (5.10). Using the time or phase shift between
consecutively received signal is a more reliable method, which is not affected much by attenuation, scattering, beam
modulation, or non-linear propagation that all affect the received ultrasound signal [9]. The reason for this is that two
signals are compared (correlated) and only the difference between two emissions is used in the velocity estimation.
This results in a much more reliable system, which does not require an extremely precise frequency content to work.
I, therefore, prefer not to call these system Doppler systems as it is confusing to what effect is actually used for the
velocity estimation.

5.5 Simulation of flow signals

The model presented above can also be used for simulating the signal from flowing blood. The Field II simulation
system [55, 38] uses a model based on spatial impulse responses. The received voltage signal is here described by [6]:

vr(t, ~r1) = vpe(t) ?
t
fm(~r2) ?

r
hpe(~r1, ~r2, t), (5.13)

where fm accounts for the scattering by the medium, hpe describes the spatial distribution of the ultrasound field, and
vpe is the one-dimensional pulse emanating from the pulse excitation and conversion from voltage to pressure and
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back again. ~r1 is the position of the transducer and ~r2 is the position of the scatterers. ?
t

and ?
r

denote temporal

and spatial convolution. This equation describes a summation of the responses from all the point scatterers properly
weighted by the ultrasound field strength as described by hpe and convolved with vpe. This yields the signal for a
collection of scatterers when the Doppler effect is neglected. For the next emission the scatterer’s positions should be
propagated as:

~r2(i+ 1) = ~r2(i) + Tprf~v(~r2(i), iTprf ) (5.14)

where ~v(~r2(i), t) denotes the velocity vector for this point scatterer for emission i at time t = iTprf . Propagating
the scatterers and calculating the received signal will then yield a realistic flow signal, which is usable for developing,
validating, and evaluating pulsed ultrasound flow systems.

A typical parabolic velocity profile for stationary, laminar flow is:

v(r) =

(
1− r2

R2

)
v0, (5.15)

where R is the vessel radius and v0 is the peak velocity in the vessel. More realistic velocity profiles can be generated
by using the Womersley-Evans’ description of pulsatile flow [56, 57]. Here a few parameters can be used to describe
the full temporal and spatial evolution of the pulsatile flow in e.g. the carotid or femoral arteries, and this can readily
be included in the simulation. It is also possible to combine this method with computational fluid dynamics using
finite element modeling for the flow [58] to capture the formation of turbulence and vortices.

5.6 Estimation of the velocity distribution

The frequency of the flow signals measured is directly proportional to the blood velocity as shown in (5.9). Finding
the frequency content of the signal therefore reveals the velocity distribution in the vessel under investigation. This is
utilized in spectral estimation systems, which often combine the measurement of velocity with an anatomic B-mode
image as shown in Fig. 5.4. The top image shows the anatomy, and the measurement range gate for the flow is indicated
by the broken line. The flow measurement is conducted within the vessel, and the ”wings” indicate the assumed flow
direction. The bottom display shows the velocity distribution as a function of time for five heart beats in the carotid
artery.

The velocity distribution changes over the cardiac cycle due to the pulsation of the flow, and the frequency content of
the received signal is, thus, not constant. The direction of the flow can also be seen here. For the carotid artery the
spectrum is one-sided (only positive frequency components) as the flow is uni-directional towards the brain. It is, thus,
important to have processing that can differentiate between velocities towards or away from the transducer. This can
be achived by using complex signals with a one sided spectrum. Making a Hilbert transform on the received Radio
Frequency (RF) signal and forming the analytic signal [59] then gives

rs(nx, i) = ags(i) exp(j(2π
2vz
c
f0iTprf − φx)). (5.16)

Here the emitted frequency f0 is scaled by 2vz
c , which can be positive or negative depending on the sign of the

velocity. Making a Fourier transform of rs(nx, i) along the i direction will yield a one-sided spectrum, so that the
velocity direction can be determined.

The signal from a vessel consists of a weighted superposition from all the primarily red blood cell scatterers in the
vessel. They each flow at slightly different velocities, and calculating the power density spectrum of the signal will
give the corresponding velocity distribution of the cells [60, 9]. Displaying the spectrum therefore visualizes the
velocity distribution. This has to be shown as a function of time to reveal the dynamic changes in the spectrogram.

Modern ultrasound scanners employ a short time Fourier transform. The complex signal is divided into segments of
typically 128 to 256 samples weighted by e.g. a von Hann window before Fourier transformation. The process is
repeated every 1-5 ms as the spectra are displayed side-by-side as a function of time as shown in Fig. 5.4. Compensat-
ing for the beam-to-flow angle then gives a quantitative and real-time display of the velocity distribution at one given
position in the vessel.
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Figure 5.4: Duplex mode ultrasound imaging showing the anatomic B-mode image on the top and the spectral velocity
distribution on the bottom (Image courtesy of MD Peter M. Hansen).

The range gate can be selected to be small or large depending on whether the peak velocity or the mean velocity is
investigated. The averaging over the range gate can be made either by selecting the length of the emitted pulse or by
averaging the spectra across the depth direction by calculating one spectrum for each depth sample n. The spectrogram
acquisition method is used clinically when quantitative parameters like peak velocity, mean velocity, or resistive index
for the flow must be calculated.

5.7 Axial velocity estimation using the phase

Spectral systems only display the velocity distribution at one single position in the vessel. Often it is preferred to
visualize the velocity in a region using the so called Color Flow Mapping (CFM) method. Here data are acquired in
a number of directions to construct a real time image of the velocity [61]. The method gives a single value for the
velocity at each spatial position, but only a very limited amount of data is available to maintain a reasonable frame
rate. Often 8-16 emissions are made in the same direction, and the velocity is found in this direction as a function of
depth. The acquisition is then repeated in other directions, and an image of velocity is made and superimposed on the
normal B-mode image as shown in Fig. 5.5.

These systems find the velocity from the phase shift between the acquired lines. The complex received signal is in
continuous time written as

rt(t) = ags(t) exp(−j(2π 2vz
c
f0t− φx)). (5.17)

Taking the derivate of its phase gives

φ′ =
dφ

dt
=
d(−2π 2vz

c f0t+ φx))

dt
= −2π

2vz
c
f0, (5.18)

so that the estimated velocity is

v̂z = − φ′

4πf0
c. (5.19)
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Figure 5.5: CFM image of the carotid artery. The red colors indicate velocity towards the transducer and blue away
from the transducer (Image courtesy of MD Peter M. Hansen).

The discrete version can be written as

rs(nx, i) = ags(i) exp(−j(2π 2vz
c
f0iTprf − φx)) = x(i) + jy(i). (5.20)

The phase difference can be found from

∆φ = φ(i+ 1)− φ(i) = arctan
y(i+ 1)

x(i+ 1)
− arctan

y(i)

x(i)

= −(2π
2vz
c
f0(i+ 1)Tprf − φx) + (2π

2vz
c
f0iTprf − φx)

= −2π
2vz
c
f0Tprf (5.21)

and the velocity can be estimated from

v̂z = − ∆φ

4πTprff0
c =

∆φ

2π

fprf
2f0

c = −∆φ

2π

fprf
2
λ = −∆φ

4π

λ

Tprf
. (5.22)

The maximum unique phase difference that can be estimated is ∆φ = ±π, and the largest unique velocity is therefore
v̂z,max = λ

4Tprf
. This is determined by the wavelength used and the pulse repetition time or essentially sampling

interval. The pulse repetition time of course has to be sufficiently large to cover the full depth and must be larger than
Tprf > 2d/c. Combining the two limitations gives the depth-velocity limitation:

v̂z,max <
c

4

λ

2d
=

c

8df0
c, (5.23)

which limits the maximum detectable velocity for a given depth, and is a limitation imposed by the use of a phase
estimation system.

The velocity estimation is not performed by taking the phase difference between two measurements, but rather by
combing the two arctan operations from:

tan(∆φ) = tan

(
arctan

(
y(i+ 1)

x(i+ 1)

)
− arctan

(
y(i)

x(i)

))
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=

y(i+1)
x(i+1) −

y(i)
x(i)

1 + y(i+1)
x(i+1)

y(i)
x(i)

=
y(i+)x(i)− y(i)x(i+ 1)

x(i+ 1)x(i) + y(i+ 1)y(i)
(5.24)

using that

tan(A−B) =
tan(A)− tan(B)

1 + tan(A) tan(B)
. (5.25)

Then

arctan

(
y(i+ 1)x(i)− y(i)x(i+ 1)

x(i+ 1)x(i) + y(i+ 1)y(i)

)
= −2πf0

2vz
c
Tprf (5.26)

or

v̂z = −c fprf
4πf0

arctan

(
y(i+ 1)x(i)− y(i)x(i+ 1)

x(i+ 1)x(i) + y(i+ 1)y(i)

)
. (5.27)

This simple algebraic equation directly yields the velocity from comparing two emissions. Often the signal-to-noise
ratio from blood signals is low due to the weak scattering from blood, and therefore it is advantageous to average over
a number of emissions as

v̂z = −c fprf
4πf0

arctan


M∑
i=1

y(i+ 1)x(i)− y(i)x(i+ 1)

M∑
i=1

x(i+ 1)x(i) + y(i+ 1)y(i)

 , (5.28)

where M is the number of emissions. This can also be calculated as the phase of the lag one autocorrelation of the
received signal [61]. Further averaging can be made along the depth direction as the data is highly correlated over a
pulse length. This is calculated as [62]:

v̂z(Nx) = −c fprf
4πf0

arctan



M∑
i=1

Np/2∑
n=−Np/2

y(n+Nx, i+ 1)x(n+Nx, i)− y(n+Nx, i)x(n+Nx, i+ 1)

M∑
i=1

Np/2∑
n=−Np/2

x(n+Nx, i+ 1)x(n+Nx, i) + y(n+Nx, i+ 1)y(n+Nx, i)


(5.29)

when the real part of received data is given as x(n, i) and y(n, i) is the imaginary part. Here n is the time index
(depth) and i is the pulse emission number. Nx is the starting sample for the depth to estimate the velocity. Np is the
number of RF samples to average over and typically corresponds to one pulse length. This is the approach suggested
by Loupas et al. [62] and is the one used in nearly all modern scanners.

5.7.1 Stationary echo canceling

At vessel boundaries the received signal consists of both reflections from the vessel boundary and the scattered signal
from blood. Often the reflection signal is 20 to 40 dB larger in amplitude compared with the signal from blood,
and it therefore makes velocity estimation heavily biased or impossible. The reflection signal is often assumed to be
stationary and thereby constant over the number of pulse emissions. Subtracting two consecutive signals will therefore
remove the stationary component and leave a signal suitable for velocity estimation:

res(n, i) = rs(n, i)− rs(n, i+ 1) (5.30)

For a fully stationary signal this will give zero whereas the flow signal will be filtered depending on the correlation
between the two emissions. This filtration on the flow part rf (n, i) of the signal can be calculated from

re(n, i) = rf (n, i)− rf (n, i+ 1) = rf (n, i)− rf (n, i) exp(j2π
2vz
c
f0Tprf ), (5.31)
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Figure 5.6: Transfer function of echo canceling filter.

assuming that the signals are so highly correlated that the shift in position due to the flow can be described by a simple
phase shift. In the Fourier domain this gives

Re(f) = Rf (f)(1− exp(j2π
2vz
c
fTprf )), (5.32)

where the Fourier transform is taken along the emissions (i). The transfer function of the filter is therefore

H(f) = (1− exp(j2π
2vz
c
fTprf )) = 2j sin(π

2vz
c
Tprff). (5.33)

The transfer function of this filter is shown in Fig. 5.6 for vz = 0.385 m/s and fprf = 3 kHz. It can be seen that
the filter reduces the energy of the RF signal significantly around a band of 6 MHz and at low frequencies. It is an
unavoidable side-effect of echo canceling filtration that the energy of the flow signal is reduced and the signal-to-noise
ratio is therefore reduced. The effect is especially noticeable at low flow velocities. Here the second signal is very
similar to the first measurement since the time shift ts = 2vz/cTprf is small. The subtraction therefore removes most
of the energy and the noise power in the two measurements are added.

The reduction in signal-to-noise ratio due to the stationary echo canceling can be analytically calculated for a Gaussian
pulse and is [9, 63]:

Rsnr =

√√√√ 2
√

2 + exp(− 2
B2
r
)

2
√

2 + exp(− 2
B2
r
)ξ1 − 2

√
2ξ2 cos(2π f0

fsh
)

ξ1 = 1− exp

(
−1

2

(
πBrf0

fsh

)2
)

ξ2 = exp

(
−
(
πBrf0

fsh

)2
)

fsh =
c

2vz
fprf , (5.34)

where the pulse is given by
p(t) = exp(−2(Brf0π)2t2) cos(2πf0t). (5.35)

Here Br is the relative bandwidth and f0 is the center frequency. The reduction for f0 = 3 MHz, fprf = 3 kHz
and Br = 0.08 is shown in Fig. 5.7. At zero velocity the decrease is infinite as the two signals are identical and no
velocity can be found. The reduction decreases progressively for increasing velocity and a gain in SNR is found at
the maximum detectable velocity. Here the two signals are inverted compared to each other and the subtraction then
yields an addition of the two. The amplitude is therefore doubled and the noise power is doubled, hence giving an
improvement of 3 dB in SNR. The curve in Fig. 5.7 is dependent on the echo canceling filter used and on the pulse
emitted p(t), but there will also be an infinite loss at zero velocity.
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Figure 5.7: Loss in signal-to-noise ratio due to the echo canceling filter.

Another method is to subtract the mean value of all the received lines as

re(n, i) = rs(n, i)−
1

M

M∑
k=1

rs(n, k). (5.36)

This gives a sharper cut-off in transfer function of the filter and less noise added to the response.

Many different echo canceling filters have been suggested [64, 65], but it still remains a very challenging part of
velocity estimation and probably the one factor most affecting the outcome of the estimation.

5.8 Axial velocity estimation using the time shift

It is also possible to estimate the velocity directly from the time shift between the signals. Two consecutive signals are
related by:

yc(t, i+ 1) = yc(t−
2vz
c
Tprf , i) = yc(t− ts, i) (5.37)

Cross-correlating two consecutive signals can then be used for finding the time shift and, hence, the velocity. This is
calculated by [54, 53]:

R12(τ, i) =

∫
T

yc(t, i)yc(t+ τ, i+ 1)dt =

∫
T

yc(t, i)yc(t− ts + τ, i)dt = R11(τ − ts) (5.38)

Using (5.2) the autocorrelation can be rewritten as

R11(τ − ts, i) =

∫
T

p(t) ∗ s(t, i)p(t) ∗ s(t− ts + τ, i)dt = Rpp(τ) ∗
∫
T

s(t, i)s(t− ts + τ, i)dt

= Rpp(τ)Psδ(τ − ts) = PsRpp(τ − ts), (5.39)

where Ps is the scattering power, and the scattering signal is assumed to be random and white. Rpp(τ) is the auto-
correlation of the emitted pulse, and this has a unique maximum value at τ = 0. Rpp(τ − ts) therefore has a unique
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Figure 5.8: Illustration of the cross-correlation. The top graph shows the two signals to be correlated and the bottom
graph shows their cross-correlation.

maximum at τ = ts, and the velocity can be found from

v̂z = c
t̂s

2Tprf
. (5.40)

The cross-correlation is calculated from the discrete sampled signals ys(n, i) as

R12d(k,Nx) =

Ne−1∑
i=1

Nn/2∑
n=−Nn/2

ys(n+Nx, i)ys(n+ k +Nx, i+ 1) (5.41)

where Ne is the number of emissions to average over, Nn is the number of samples to average over, and Nx is the
sample number (depth) at which to find the velocity at. The position of the peak ns in R12(k,Nx) is then found at the
velocity calculated from

v̂z = c
n̂s/fs
2Tprf

, (5.42)

where fs is the RF sampling frequency.

The cross-correlation function is shown in Fig. 5.8. The upper graph shows the two signals used where the time shift
readily can be seen. The lower graph shows the cross-correlation of the signals along with an indication of the peak
position. A 3 MHz Gaussian pulse was used in the simulation along with fprf = 5 kHz and a 20 MHz sampling
frequency. The velocity was 0.35 m/s, which gave a time shift of ts = 0.156 µs.

The time shift is usually comparable the sampling interval 1/fs, and the velocity estimates will be heavily quantized.
This can be solved by fitting a second-order polynomial around the cross-correlation peak and then finding the peak
value of the polynomial. The interpolation is calculated by [66]:

nint = ns −
R̂12d(ns + 1)− R̂12d(ns − 1)

2(R̂12d(ns + 1)− 2R̂12d(ns) + R̂12d(ns − 1))
(5.43)

and the interpolated estimate is given by

v̂int =
c

2

nintfprf
fs

. (5.44)
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This gives an increased resolution, if the cross-correlation estimate is sufficiently noise-free.

Several factors affect how well this estimator works. A short pulse should be used for the emission to provide the
narrowest possible cross-correlation function. The averaging should by performed over a sufficient number of samples
to give a good estimate, but should also be limited to a region where the velocity can be assumed to be constant in
space. Also, the number of emissions averaged over time should be sufficient to ensure a good result without lowering
the frame rate too much.

The cross-correlation method can find velocities higher than the autocorrelation approach as it is not restricted to a
phase shift of ±π. In theory any kind of velocity can be found, but this can lead to false peak detection [67]. Here a
global maximum in the correlation function beyond the correct peak is found. As the cross-correlation is determined
by the autocorrelation of the pulse, these erroneous peak will reside at k/f0 + ns, leading to a large error in the
estimated velocity. This can be difficult to correct and gives spike artifacts in the image display. Often the search
range for finding the maximum is therefore limited to lie around zero velocity. No false peaks arise if the search range
is limited to−fs/(2f0) < k < fs/(2f0) which gives the same maximum velocity as the autocorrelation or phase shift
approach.

It is difficult to decide which of the two methods are best. Often the cross-correlation gives better accuracies on the
estimates, but this is off-set by its lower sensitivty, which comes from using a shorter pulse. In general the decision is
dependent on the actual measurement situation and setup.

5.9 Two-dimensional vector velocity estimation

The methods described so far only find the velocity along the ultrasound beam direction, and this is often perpendicular
to the flow direction. The velocity component found is therefore often the smallest and least important. Many angle
compensation schemes have been devised [68, 69] but they all rely on the assumption that a single angle applied for
the whole cardiac cycle and region of interest, which in general is not correct. Due to the pulsating nature of the flow,
the velocity will often be in all directions and changes both magnitude and direction over the cardiac cycle. There is,
thus, a real need for vector velocity estimation methods.

The problem has been acknowledged for many years, and a number of authors have suggested schemes for finding the
velocity vector. Fox [70] used two crossing beams to find the velocity for two directions and then combine it to yield
the 2-D velocity vector. Newhouse et al. [71] suggested using the bandwidth of the received signal to determine the
lateral component. Trahey et al. [72] used a speckle tracking approach for searching for the velocity vector.

Currently the only method that has been introduced on commercial FDA approved scanners is the Transverse Oscilla-
tion (TO) approach developed by Jensen and Munk [73, 74]. A similar approach was also suggested by [75].

The traditional axial velocity estimation methods rely on the axial oscillation to find the velocity. The TO method
introduces an oscillation transverse to the ultrasound propagation direction to make the received signals sensitive to
a transverse motion. Such a transverse field is shown in Fig. 5.9. The figure shows a contour plot of the linear point
spread function (PSF), and oscillations can be seen both in the lateral and axial direction. Two fields are needed to
make a complex field with an in-phase and quadrature component that can be used for finding the sign of the velocity
in the lateral direction.

The lateral oscillation is generated by utilizing a special apodization on the transducer during receive processing. At
the focus there is a Fourier relation between the transducer’s apodization function and the ultrasound field [76]. To
generate a sinusoidal oscillation, the receive apodization should ideally, derived for a continuous field, consist of two
sinc shaped peaks with a distance of D. This will give a lateral wavelength of:

λx = λ
2D

Pd
, (5.45)

where Pd is the depth in tissue. Sending out a fairly broad beam and focusing the two fields in receive with this
apodization function will yield the fields shown in Fig. 5.9. The signals at the dashed line are shown in Fig. 5.10,
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Figure 5.9: Ultrasound fields employed in TO velocity estimation. The top graph shows the left field and the bottom
the right field.

where the blue curve is from the left field and the dashed green curve is from the right field. These two signals should
ideally be 90◦ phase shifted compared to each other to generate a one-side spectrum. For a pulsed field (5.45) is not
accurate enough to ensure this and computer optimization has been made to adjust the focusing to give the best possible
result [77]. This has been done for a convex array probe by minimizing the amplitude spectrum of the complex field
for negative spatial frequencies as shown in the lower graph in Fig. 5.10. This ensures a nearly one sided spectrum
and thereby the best possible estimate in terms of bias and standard deviation.

The receive beamforming yields signals usable for the vector velocity estimation. They are combined into the complex
signal rsq(i) and a temporal Hilbert transform of this gives the signal rsqh(i). From these two new signals are made:

r1(i) = rsq(i) + jrsqh(i)

r2(i) = rsq(i)− jrsqh(i). (5.46)

The velocity components are then estimated by the TO estimators derived in [74]. They are given by:

vx =
λx

2π2Tprf
arctan

(
={R1(1)}<{R2(1)}+ ={R2(1)}<{R1(1)}
<{R1(1)}<{R2(1)} − ={R1(1)}={R2(1)}

)
(5.47)

and

vz =
c

2π4Tprff0
arctan

(
={R1(1)}<{R2(1)} − ={R2(1)}<{R1(1)}
<{R1(1)}<{R2(1)}+ ={R1(1)}={R2(1)}

)
. (5.48)

where R1(1) is the complex lag one autocorrelation value for r1(i), and R2(1) is the complex lag one autocorrelation
value for r2(i).= denotes imaginary par and < the real part. These give the velocity vector in the imaging plane.

Fig. 5.11 shows a vector flow image (VFI) of the carotid bifurcation measured by a linear array probe and the TO
approach. The image is acquired right after peak systole. The vectors show magnitude and direction of the flow, while
the color intensities show velocity magnitude. A vortex can be seen in the carotid bulb. The vortex appears right after
peak systole and disappears in roughly 100 ms. This is a normal flow pattern in humans and shows the value of vector
flow imaging. It is important to note that there is no single correct beam-to-flow angle in this image. Both magnitude
and direction change rapidly as a function of both time and space, making it essential to have a vector flow estimation
system to capture the full complexity of the hemodynamics.
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Figure 5.10: Lateral left and right responses in the TO fields at the maximum compared to the Hilbert transform of the
left field. The bottom graph shows the 2-D Fourier transform of the complex TO psf.
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Figure 5.11: Vector flow image of the carotid bifurcation right after peak systole, where a vortex is present in the
carotid bulb (from [78]).
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Figure 5.12: Receive apodization profiles applied to generate the TO fields for all three velocity components. The
white shaded areas indicate the active elements in the 32 x 32 array (from [79]).

5.10 Three-dimensional vector velocity estimation

The TO approach can also be extended to full three-dimensional imaging by using a 2-D matrix transducer. Here
5 lines are beamformed in parallel during the receive processing to get a set of lines for the transverse, elevation,
and axial velocity components. The beamforming is visualized in Fig. 5.12, where the active elements used in the
beamformation are shaded white and the corresponding velocity direction is indicated below the array. Slices into the
corresponding ultrasound fields are also shown below the transducer, and the oscillations in the axial, transverse, and
elevation planes can be seen.

The approach has been implemented on the SARUS experimental ultrasound scanner [80] connected to a Vermon 32
x 32 3MHz matrix array transducer [81, 82, 79]. Parabolic flow in a recirculating flow rig was measured, and the
result is shown in Fig. 5.13. The flow is in the elevation direction (out of the imaging plane) of the image shown
in the bottom, and both 1-D and 2-D velocity estimation systems would show no velocity. The arrows indicate the
out-of-plane motion amplitude and direction and show the parabolic velocity profile.

The approach has also been used in-vivo as shown in Fig. 5.14 for the carotid artery. Two intersecting B-mode images
have been acquired, and the 3-D velocity vectors have been found at the intersection of the two planes. The estimated
velocity magnitude as a function of time is shown in the lower graph, and the velocity vector is shown around the peak
systole in the cardiac cycle. This method has the potential of showing the full dynamics of the complex flow in the
human circulation in real time for a complete evaluation of the hemodynamics.

5.11 Synthetic aperture and plane wave flow estimation

The measurements systems described so far are all sequential in nature. They acquire the flow lines in one direction at
a time, and this makes the measurement slow, especially when images consist of many directions or many emissions
have to be used for flow estimation. Triplex imaging shows both the B-mode, CFM image, and spectral information
simultaneously and therefore needs to split the acquisition time between the three modes. This often makes the
resulting frame rate unacceptable low for clinical use for large depths. This will also be a very limiting factor for 3-D
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Figure 5.13: 3D vector velocity image for a parabolic, stationary flow(from [79]).

Figure 5.14: In-vivo 3-D vector velocity image taken around peak systole in the carotid artery of a healthy volunteer
(Courtesy of Dr. Michael Johannes Pihl).
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Figure 5.15: Acquisition of SA flow data and beamforming of high resolution images (from [93]).

flow imaging, which often has to resort to ECG gating when acquiring full volumes. Another drawback of traditional
imaging is the use of transmit focusing. This cannot be made dynamic, and the images are only optimally focused at
one single depth.

These problems can be solved by employing new imaging schemes based on synthetic aperture (SA) imaging [83,
84, 4, 85, 86, 87, 88, 89] and plane wave imaging [90, 91, 92]. Both these techniques insonify the whole region to
interrogate and reconstruct the images during receive beamforming. This potentially can lead to very fast imaging and
can also be used for flow imaging with very significant advantages.

The SA method is shown in Fig. 5.15. The transducer on the top emits a spherical wave, and the scattered signal is
then received on all elements of the transducer. This process is repeated for a number of emission sources Nl on the
aperture, and the data are collected for all receiving elements. From the received data for a single emission, a full
low resolution (LR) image can be made. It is only focused in receive, but combining all the LR images yields a high
resolution (HR) image. This is also focused during transmit as all the emitted fields are summed in phase [94]. The
approach gives better focused images than traditional beamforming [95] with at least a preserved penetration depth
when coded excitation is used.

The imaging scheme can also be used for flow estimation, although the data are acquired over a number of emissions,
and therefore are shifted relative to each other. This is also illustrated in Fig. 5.15 for a short sequence. The point
spread function for the low resolution images are shown below for a point scatterer moving towards the transducer. The
LR point spread functions (PSFs) are different for the different emissions and can therefore not be directly correlated
to find the velocity. Adding the low resolution images gives the PSF for the HR images, and it can be seen that these
have the same shape, when the emission sequence combined is the same apart from the motion in position. The basic
idea is therefore only to correlate the HR PSFs with the same emission sequence for finding the flow. This can also be
performed recursively, so that a new correlation function is made for every new LR image [89].

The approach is illustrated in Fig. 5.16. The HR signals in one direction is shown on the top divided into segments.
The length of the emission sequence is Nl and therefore emission n and n + Nl can be correlated. This can then be
averaged with n+ 1 correlated with n+ 1 +Nl as the time shift ts is the same. It is therefore possible to continuously
average the correlation function, and therefore use all data to get a very precise estimate of the correlation and thereby
the velocity. This can be performed for all directions in the HR image continuously.
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Figure 5.16: Averaging of cross-correlation functions in SA flow imaging (from [93]).

This has a number of advantages. The data can be acquired continuously, and data for flow imaging is, therefore,
continuously available everywhere in the image. This makes it possible to average over very large amounts of data and
makes echo canceling much easier [93]. Initialization effects for the filter can be neglected as the data are continuous,
and this makes a large difference for e.g. low velocity flow. The cut-off frequency of the traditional echo canceling
filter is proportional to fprf/M where M here can be made arbitrarily large. The correlation estimates can also be
averaged over a larger time interval Ti. The length Nh is only limited by the acceleration af of the flow. For a
cross-correlation system there should at most be 1

2 sampling interval shift due to acceleration:

afNlTprfNh <
1

2fsTprf

c

2
(5.49)

or
Ti = NlTprfNh <

fprf
2fs

c

2af
(5.50)

to avoid de-correlation in the estimate of the cross-correlation function.

The data can also be focused in any direction as complete data sets are acquired, and the position of both the emitting
sources and the receivers are known. The signals for velocity estimation can therefore be focused along the flow lines,
if the beam-to-flow angle is known. This focusing scheme is shown in Fig.5.17. For each depth the data are focused
along the flow and then used in a cross-correlation scheme to find the velocity [96, 97].

The estimated profiles for such a scheme are shown in Fig. 5.18 at a beam-to-flow angle of 60◦. A linear array was
used with an 8 emission SA sequence using a chirp pulse. Data from 64 elements were acquired for each emission,
and 16 sequences, for a total of 128 emission, were averaged. All the 20 estimated velocity profiles are shown on
the top and the mean ± 3 std are shown on the bottom. The mean relative standard deviation was 0.36% [96]. The
approach also works for fully transverse flow and can yield a fast and quantitative display of the vector velocity.

It is also possible to determine the angle from the data. Here the directional lines are beamformed in all directions,
and the one with the highest relative correlation indicates the angle [98]. An example of an in-vivo SA vector flow
image from the carotid artery is shown in Fig. 5.19, where both velocities and angles have been estimated.

The data can also be used for visualizing the location of flow. This is done by finding the energy of the signals after
echo canceling in a B-flow system [99] or power Doppler mode and show this. The intensity of the signal is then
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Figure 5.19: In-vivo SA vector flow imaging from the carotid artery (from [98])

roughly proportional to the velocity. An example of a SA B-flow image is shown in Fig. 5.20 at two different time
instances in the cardiac cycle.

Another method for making fast and continuous imaging is to utilize plane wave emission. Here the full transducer is
employed to transmit a plane wave, and then data are acquired for all the receiving elements [90]. The full image can
then be reconstructed as for SA imaging. The image is only focused during receive and will have a lower resolution
and higher side-lobes than conventional images. This can be compensated by using a number of plane waves at
different angles as illustrated in Fig. 5.21. Combining these with a proper apodization can then lead to a full HR image
[101]. This imaging scheme has the same advantages as SA imaging with a continuous data stream that can be used
for increasing the sensitivity of flow estimation.

These imaging schemes can also be made very fast, and this is beneficial for looking at transitory and very fast flow
phenomena, which are abundant in the human circulation [102, 103]. An plane wave vector flow image is shown in
Fig. 5.22. A single plane wave was continuously emitted and the full image was beamformed for each emission. This
was used in a speckle tracking scheme to find the velocity vectors and resulted in 100 independent vector velocity
images per second [104]. A valve in the jugular vein and the carotid artery were imaged. The left image shows the
open valve on the top, where a clockwise vortex is found behind the valve leaflets. The valve is incompetent and
does not close correctly as shown in the right graph, where a noticeable reverse flow is seen. The vortex behind the
leaflet has also changed direction. The middle image shows secondary rotational flow in the carotid artery during peak
systole indicating the importance of having a full three-dimensional flow system.

SA and plane wave flow imaging is excellent for observing slow moving flow due to the long observation time possible.
This has been demonstrated in [105, 101], which used plane wave imaging for mapping the brain function of a rat. The
new acquisition methods can, thus, obtain data suitable for both fast vector velocity imaging and slow flow estimation
for functional ultrasound imaging.

5.12 Motion estimation and other uses

The methods described can in general also be used for motion estimation. Tissue motion can be found by leaving out
the echo canceling filter, and then all the methods can be applied for strain imaging [106], radiation force imaging
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Figure 5.20: SA B-flow image of jugular vein and carotid artery (from [100]).
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Figure 5.22: In-vivo plane wave vector flow images acquired at a frame rate of 100 Hz. The left image shows flow
through a valve in the jugular vein at peak systole. The right image shows reverse flow during diastole. Note how
the vortices behind the valve leaflet change rotation direction. Secondary flow is also seen in the middle image in the
carotid artery below the jugular vein. (from [104]).
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[107, 108], shear wave imaging [90], tissue Doppler [109] and others methods relying on the detection of motion or
velocity. In general the methods have an improved performance for tissue, due to the increased signal-to-noise ratio
and the lack of the echo canceling filter. It is therefore possible to calculate the derivatives necessary for some of these
methods.

The velocity estimates are also used in deriving quantitative numbers useful for diagnostic purposes. Especially the
new vector velocity estimates can be used for making the diagnosis more quantitative by calculating e.g. the volume
flow [110], deriving quantities for indicating turbulence [111], and finding mean or peak velocities. It is also possible
to use the vector velocity data for calculating flow gradients by solving the Navier-Stokes equations [112].

The development within velocity estimation is by no means complete. The combination of SA and plane wave imaging
with 2-D and 3-D vector velocity and functional imaging is still a very active research area, and more complete
information about the complex flow in the human body can be obtained. It will in real time reveal the many places
for transient turbulences, vortices, and other multi-directional flow, and it will become possible to derive many more
quantitative parameters for characterizing the patient’s circulation.
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