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This paper calculates four major time duration and bandwidth
expressions for a linearly frequency modulated sinusoid with
Gaussian shaped envelope. This includes a Gaussian tone pulse.
The bandwidth is found to be a non-linear function of nominal
time duration and nominal frequency excursion of the chirp
signal.

Introduction: When evaluating ultrasound, sonar and radar sys-
tems, knowledge of the bandwidth of the transmitted signal is
essential. Knowledge of the system bandwidth (transmitted signal
and receiver etc.) permits determination of the range resolution
and, for Doppler systems, the accuracy in target velocity esti-
mation. In medical pulsed Doppler ultrasound, the envelope of
the pulse can often be approximated with a Gaussian shape, and
when utilizing frequency modulated (chirp) signals, the envelope
of the transmitted chirp can be made Gaussian. It is the aim of
this paper to find concise time duration and bandwidth expressions
for this important class of signals (i.e. linearly frequency modu-
lated sinusoid with a Gaussian shaped envelope).

Definition of chirp signal and spectrum:Diagnostic echo-ranging
systems such as radar, sonar and medical ultrasound equipment
often transmits either a pure tone pulse or a linearly frequency
modulated sinusoidal pulse with a given envelope. In both cases
such a signal can be written as

In (1), the first term,gw(t), is an envelope function of lengthtm,
while the second is the linearly frequency modulated sinusoid.f1
is the start frequency andS0 is the sweep-rate in Hz/s. As the
length of the signal istm, the instantaneous frequency (of the
corresponding analytical signal) att = tm is f2 = f1 + S0tm. The
frequency span corresponding totm is ∆f = f2 f1. If S0 = 0, (1)
defaults to a pure tone. The aim of this paper is to find expressions
for the "effective" duration of (1) as well as the bandwidth of the
spectrum of (1). To do the latter we introduce the complex version
of (1) to obtain a single sided spectrum which next is frequency
shifted so as to be placed symmetrically aroundf = 0. gw(t) must
be symmetrical which will be fulfilled by using a Gaussian
window, which also permits closed form solutions to the problem.
An additional simplification that changes neither the duration nor
the bandwidth expressions is introduced by time-shifting (1) so it
becomes symmetrical aroundt = 0. The signal in (1) can now be
modelled as

Figure 1. Example of the complex, Gaussian amplitude
weighted, linearly frequency modulated sinusoid in (2). Real ( )
and imaginary (---) parts are shown. The parameters for this
example is:tm = 100 s,∆f = 1 Hz andα = 3.

where we definea ≡ 2(α/tm)2 and b = πS0. The time duration of
is infinite, but the nominal time duration,tm, is specified

such that | s(± tm/2)| = γ. For γ ~ 0.0111, meaning that the
amplitude att = ±tm /2, has decreased to ~ 1.11 % of the maximal
value att = 0, one getsα = 3. This α value is also used in [2].
Thus, if the signal length was limited totm, 1/α would indicate
the degree of severity of the truncation. However, in the
subsequent formulas, the signal is considered of infinite length.
An example of is given in Fig. 1. The spectrum of the signal
has been found to be:[1,3]

Expressions for time duration:Apart from the nominal time
duration,tm, three other expressions for the time duration of the
signal can be stated:

ii) The equivalent rectangular (er)duration is the duration of a
rectangular pulse of the same maximal amplitude and of the same
energy as . It can be expressed as:

iii) The 3 dB duration is determined by the points where the
power has dropped to half of the maximal power:

iv) The root-mean-square (rms)duration is a measure of the
distribution of power around the "point of gravity" of the pulse.
It is expressed as:

These measures are illustrated in Fig. 2. Whileii) and especially
iii) are the simplest to calculate from a given signal,iv) is the
only expression that includes the actual shape of the spectrum.
However, as seen from (4) - (6), for a Gaussian shape, the four
measures differ only by a constant of proportionality.

Figure 2. The different width measures indicated on the
Gaussian (power) function, or .

Expressions for bandwidth:Equivalent to the expressions for the
time duration, similar expressions exist for the width of the
spectrum in (3). These are found by substitution of with
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in (4) to (6). The result of this substitution is seen in Table
1. It can be shown that the four bandwidth expressions can be
derived from

by use of the coefficients given in Table 1. For example, therms
bandwidth is: Brms = Bx/2. (7) reveals that the bandwidth
expression combine, in a vectorial fashion, contributions from
both the finite duration of the signal,tm, and the frequency
excursion,∆f. It can also be shown, that for large time-bandwidth
products (slow sweep-rate),tm∆f » 2α2/π, the envelop of can

be approximated by the envelope of properly scaled. This
principle can be used for all well-behaving envelopes.[3]

Table 1 Time duration and bandwidth expressions for linearly
frequency modulated sinusoid with Gaussian shaped envelope.
Also indicated is the minimum time-bandwidth product as well
as the energy contained within the given width definition.

Expression Nominal er 3 dB rms

Duration (s)

Bandwidth (Hz)

min{TB} ( ∆f=0)

Energy,α = 3 >0.9999 0.80 0.76 0.39

With respect toTer andBer, it should be noted that some books[4]

give a different, somewhat less tractable, definition ofTer so that
the minimum time-bandwidth product yields unity instead of a
half. Some considerations must also be taken into account when
applying the theory to realistic signals. The shape of (3) must be
matched as well as possible to the right-hand-side spectrum of
the signal in (1). In addition to this, the more the envelope of the
time signal deviates from a Gaussian shape (maybe due to
truncation), the higher the minimum time-bandwidth product.
However, by using Fig. 2, an estimate of time duration and
bandwidth can quickly be found.

Conclusions: In this paper expressions for four major time
duration and bandwidth expressions have been provided. The
numerical differences between these, given a typical (Gaussian)
spectral envelope, have been quantified and illustrated. Specifi-
cally, the difference between the 3 dB and therms bandwidth
is quite large both in nature and magnitude, and it is thus very
important that the bandwidth definition is specified together with
the value. For a chirp signal with Gaussian envelope, it was found
that both the duration of the signal and the frequency excursion
contribute to the bandwidth.
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