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Quantitative Analysis of Ultrasound B-Mode Images
of Carotid Atherosclerotic Plaque: Correlation with
Visual Classification and Histological Examination
J. E. Wilhjelm,* Member, IEEE, M.-L. M. Grønholdt, B. Wiebe, S. K. Jespersen, L. K. Hansen, and H. Sillesen

Abstract—This paper presents a quantitative comparison of
three types of information available for 52 patients scheduled
for carotid endarterectomy: subjective classification of the ultra-
sound images obtained during scanning before operation, first-
and second-order statistical features extracted from regions of
the plaque in still ultrasound images from three orthogonal scan
planes and finally a histological analysis of the surgically removed
plaque. The quantitative comparison was made with the linear
model and with separation of the available data into training and
test sets. The comparison of subjective classification with features
from still ultrasound images revealed an overall agreement of
60% for classification of echogenicity and 70% for classification
of structure. Comparison of the histologically determined relative
volume of soft materials with features from the still images
revealed a correlation coefficient ofr = �0:42(p = 0:002); for
mean echogenicity of the plaque region. The best performing
feature was of second order and denoted Contrast(r = �0:5).
Though significant, the latter correlation is probably not strong
enough to be useful for clinical prediction of relative volume of
soft materials for individual patients. Reasons for this is discussed
in the paper, together with suggestions for improvements.

Index Terms—Carotid plaque, feature extraction from ultra-
sound images, gray level co-occurrence matrix, quantitative his-
tology.

I. INTRODUCTION

I N most industrialized countries, stroke remains the third
most common cause of death and many patients surviving

a stroke experience permanent disabilities, often resulting in
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inability to work or even the need for help to meet daily tasks.
Twenty to thirty percent of strokes are believed to be caused by
emboli arising from atherosclerotic carotid artery plaques, and
recent studies have shown that the risk of stroke is reduced
by more than 50% by surgical removal (endarterectomy) of
plaques that caused a diameter reduction of more than 70%
[9], [30] assessed by angiography. However, not all carotid
plaques are necessarily harmful and as carotid endarterectomy
carries a considerable risk for the patient, optimized selection
of patients for operation is crucial.

So far, ultrasound Doppler examination has become well
established for assessment ofthe lumen reductioncaused by
the carotid plaque [12], [26], [28], and the method has in
some institutions supplanted arteriography even when carotid
endarterectomy is planned. [16] However, during the last
decade an increasing number of reports have indicated that B-
mode ultrasound images of the carotid plaque reveal features
(echogenicity and structure) related to the presence of brain
infarcts on computed tomography images [17] and to the risk
of developing new neurological symptoms [2], [6], [20], [22],
[25], [32], [38]. In other studies, where carotid endarterectomy
was involved, the intensity of the reflected signals has been
related directly to the amount of calcification and inversely to
the amount of soft materials (lipids and hemorrhage) [8], [13],
[31]. In addition, plaques with a heterogeneous appearance
on the ultrasound image (i.e., echogenic areas mixed with
anechoic areas) contain more calcification compared to ho-
mogeneous plaques [8], [18]. With few exceptions, this work
has been performed using subjective visual classification of
the ultrasound images.

To obtain a more objective approach, El-Barghoutyet
al. [10] calculated the echogenicity associated with carotid
plaques and found that those with a low median gray-scale
value were associated with cerebral infarctions identified on
computed tomography images much more commonly as com-
pared to those with a high median gray-scale value. Later,
El-Barghoutyet al. [11] found a direct correlation between
median echogenicity of carotid plaques and content of fibrous
tissues and an inverse correlation to content of soft materials.

Quantitative image analysis has previously been applied to
echocardiographic images, [7], [39] ultrasound images of the
breast [14], [15] and to ultrasound images of liver [4], [24],
[29], [36], [40]. In the latter investigations, a large number of
features has been calculated from regions located inside liver
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Fig. 1. Overview of data sources and analysis methods.

tissue on B-mode images. By means of different calculation
schemes, these features have then been used to classify each
organ into a few classes (normal tissue and different classes
of diseased tissue). Not all of these investigations involved
model design based on a subset of the available data (training
set) followed by performance analysis of this model based
on the remaining data (test set). When analyzing multiple
features, this can be an important tool in reducing—but not
eliminating—the risk of finding accidental correlation between
a given feature and the available data, since the test error is
an unbiased performance measure [3].

In the present study, statistical features were calculated
from carotid plaque regions in digitized video ultrasound
B-mode images. It was investigated, to which extent these
features correlated with subjective visual classification of
the plaque appearance, as evaluated by the ultrasonographer
during scanning and how well the features correlated to the
histological composition of the plaque specimen.

II. M ATERIALS AND METHODS

A. Subjects and Clinical Recording Procedure

A schematic outline of the investigation is given in Fig. 1.
Fifty-two patients were selected randomly out of 119 con-
secutive patients that had experienced ipsilateral neurological
symptoms. The patients underwent prophylactic carotid en-

darterectomy 2.7 2.8 (mean SD) days after ultrasound
examination. All patients gave informed consent and the study
protocol was approved by the medical ethics committee for
Copenhagen and Frederiksberg counties (#KF 01-375/94).

Preoperatively the stenotic carotid artery was evaluated
with high resolution B-mode, color flow mapping (CFM) and
spectral Doppler ultrasonography. In each patient, represen-
tative scan-sequences were recorded in the lateral, anterior
and cross-sectional planes with and without color Doppler
on video tape for later analysis. The three planes recorded
are denoted and , respectively. Effort was made
to ensure that the cross-sectional plane was at the location
of maximal stenosis. The atherosclerotic lesion (plaque) in
the carotid artery was classified on-line by a single experi-
enced investigator (MLG) using the following characteristics:
plaque echogenicity was eitherstrong(echogenic),intermedi-
ate, or weak(anechoic) relative to the intima-media complex
of the far carotid wall; plaque structure was described as
homogeneousor heterogeneous[8], [37]. Using generally
accepted Doppler criteria [26] the degree of stenosis was
also estimated. The mean degree of stenosis was 79% (range
50–95%).

Reviewing the videotapes, B-mode images from the three
different scan planes of each carotid artery were digitized
and stored in a computer for further analysis. Selection was
done, such that plaque contour/border, area, and contrast were
optimized, subjectively judged. For each image, outline(s) of
plaque region(s) were drawn by the same investigator (MLG)
who had previously done the ultrasound examination. This
investigator was unaware of the results of the histological
analysis and the feature extraction. The outline was drawn on
the B-mode image under visual support by the corresponding
CFM image to best identify the border of the plaque. In
cases with acoustic shadow, a possible part of the plaque
in the shadow region—which typically would be black—was
not included. Fig. 2(a) provides an example of such outlines
while Fig. 2(b) shows the corresponding surgically removed
plaque.

B. Ultrasound System and Digitalization Equipment

A diagnostic ultrasound scanner (RX 400, Interspec, ATL,
Bothell, WA, USA) with a 128-element 5- to 10-MHz linear
array transducer was used for the clinical recordings. Transmit
focus of the scanner was always set to the depth considered.
Image sequences were transferred to a super VHS video
recorder (type AG-7350, Panasonic). Still images were later
digitized (with gray levels) with a frame grabber
(Targa 2000-E, Truevision Inc., Indianapolis, IN) and captured
with image processing software (Image Pro v1.2.01, Media
Cybernetics, Silver spring, MD). The vertical and horizontal
width of the point-spread function (psf), was estimated with
a string phantom and found to be
and at a depth of 2 and 3 cm, respectively. One
wavelength is equal to 0.2 mm ( 2 pixels) at 7.5 MHz
assuming the speed of sound to be 1540 m/s.

The image degradation due to the video recorder was in-
vestigated by considering a point-like character on the scanner
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TABLE I
KEY PARAMETERS IMPORTANT FOR PERFORMANCE OFESTIMATES OF FIRST- AND SECOND-ORDER FEATURES. THE VALUES

GIVEN AS MEAN �SD WERE BASED ON 52 PATIENTS. THE p-VALUES ARE THE RESULTS OF COMPARING THE LATERAL

SCAN PLANE TO THE ANTERIOR AND TO THE CROSS-SECTIONAL SCAN PLANES. NS= NOT SIGNIFICANT (p � 0:01)

(a)

(b)

Fig. 2. (a) Typical B-mode image of an atherosclerotic carotid artery with
plaque regions outlined. This particular plaque was characterized as anechoic
and homogeneous. The upper left rectangular region was used to study the
mean gray level in the muscle tissue (Fig. 3). The rectangular region in
the lumen was used for calibration purposes. (b) The formalin fixed plaque
specimen after surgical removal. The picture shows the opened plaque from
the proximal common carotid artery (right) to the distal internal carotid artery
(left). The plaque is approximately aligned with the ultrasound image. The
length is 32 mm.

screen. Images digitized directly and after storage on the video
recorder were compared, and the video recorder was found
to introduce—for a given pixel—a root-mean-square (rms)
error on the gray-level value of approximately five gray levels.
This was partly due to noise, partly because the output image

from the video recorder was lowpass filtered in the horizontal
direction. The smearing due to the latter was low, compared
to the horizontal extent of the psf.

C. Histological Analysis of Removed Plaque

The carotid plaques were removed during surgery and
fixed in 4% formalin. After measuring the length of the
entire specimen, transverse blocks of length 2–3 mm were
cut. The external carotid was discarded. After processing
the blocks in paraffin, microtome slices (of 4m thickness)
were cut from each block and stained with haematoxylin,
eosin and Verhoeff. Histological analysis was performed by an
experienced pathologist (BW) using a microscope connected
to a computer running an image analysis program. From the
microscopic image of each stained slice, the regions of soft
materials (lipids, haemorrhage, and thrombus), fibrous tissues
and calcification were identified subjectively by the pathologist
and the area calculated. By assuming a constant interblock
distance, the relative volume of each component, e.g.,
was finally calculated. Thus,

D. Scan Plane Statistics

To decide whether all three scan planes should be used in the
subsequent analysis, the following parameters were considered
for all scan planes: 1) plaque depth, which preferably should be
as low as possible to minimize the distortion of the intervening
tissue layer between transducer and plaque; 2) plaque area,
which preferably should be as large as possible to represent
as much plaque as possible; 3) mean plaque extent in the
horizontal and vertical image directions, which should be as
large as possible to have as many co-occurrences as possible
for generation of second-order image features.

The mean values and standard deviations of these parame-
ters are shown in Table I. To investigate if these values were
associated with a statistically significant difference between
scan planes, -values were calculated between scan plane 1
and 2 as well as between scan plane 1 and 3. The-values were
calculated with Wilcoxon matched-pairs signed-ranks test. The
null hypothesis is that the difference between
the members of each pair has median value zero.

The four parameters in Table I characterize the plaque
regions in the ultrasound images. If either scan plane two or
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three was associated with parameters much worse than scan
plane one, it could be expected that this scan plane would
add less information to the subsequent image analysis than
the other scan planes. Table I indicates that when all four
parameters are considered together, neither scan plane two nor
three has systematically inferior parameters than scan plane
one.

E. Image Calibration

The gain level of the ultrasound scanner was adjusted for
each patient so that echoes just began to appear in the blood
lumen in the image of the lateral scan plane. This was neces-
sary since the intervening tissue layer and its orientation were
different from patient to patient. Nevertheless, inconsistency in
overall gray level might be a potential problem as also pointed
out by Kadahet al. [24]. A possible solution would be to find
a region or a characteristic in the B-mode image that can be
considered to have a common behavior.

In the present investigation a rectangular box was placed
near the plaque in the unaffected lumen of the artery on the
ultrasound image, as illustrated in Fig. 2(a). The mean gray
level of the blood region is due to scattering from blood in the
main lobe, electrical noise and various echoes produced by
sidelobes and grating lobes. It was verified that increasing the
gain resulted in an approximately linear increase in mean gray
level of this box over the range of gains used. Thus, the mean
level of the blood region depended on variations in gain setting
from patient to patient (e.g., too high adjustment of the gain
with a given attenuation of the intervening tissue layer between
transducer and plaque). As a simple attempt to improve the
consistency in overall gray level between patients, each image
was calibrated by subtracting the mean gray level of the blood
region from that image and setting possible negative values in
the resulting image to zero (it was assumed that any gray level
below that of the mean blood level could be considered noise).

F. Feature Extraction from Plaque Regions

The information in the plaque region(s) of each B-mode
image was reduced to a number of scalars by means of
extraction of first- and second-order texture statistics. As seen
in Fig. 2(a), the plaque regions were highly irregular. Each
plaque region was referred to as a matrix , where
a subgroup of all the elements, , corresponds to “plaque
pixels” and the rest were excluded from further analysis. The
normalized feature value from a given plaque,and a given
plane, is identified by the symbol where is the
feature number.

Sixteen first-order gray-level features were calculated from
the normalized gray-level histogram. Specifically, if is
the number of image pixels with gray level, such that

, then the normalized histogram,
, is the empirical probability density function for single

pixels. An overview of the first-order features is given in the
Appendix. When more than one plaque region was identified
in the image, was calculated for each region and then
added, and the result normalized, before further analysis.

Seven second-order features were calculated based on the
gray-level co-occurrence matrix (GLCM) [5], [29]. This basis
for calculating second-order features has previously been used
in attempts to classify tissue from ultrasound images [4], [5],
[24], [29], [36], [39], [40]. The GLCM is a measure of the
co-occurrences in the image and is calculated for a given
displacement vector, . A given cell in the GLCM,

, indicates how many pairs of two pixels, separated by
the displacement vector, that have the gray levels and
, respectively. An overview of the second-order features are

given in the Appendix. When a given B-mode image contained
more than one plaque region, the GLCM’s for the different
regions were added to yield one single GLCM per B-mode
image. The GLCM is normalized, so that each element is an
estimate of empirical probability.

As described above, the GLCM is calculated based on
two parameters. The angle was restricted to 0(horizontal
direction, left to right in the image) and 90(vertical direction
(i.e., along the ultrasound beam), from top to bottom in the
image). For each of these angles, the lower bound on the
step size is dictated by the extent of the psf, as found in
Section II-B. The upper bound is dictated by the desire to
obtain a reasonably high number of pairs in the GLCM (see
Table I, columns four and five). These considerations lead to
the following values for : (7, 0 ), (10, 0 ), (15, 0 ),
(20, 0 ), (30, 0 ), (5, 90 ), (8, 90 ) and (12, 90). Note that

.
In the subsequent analysis, the features obtained from each

of the three scan planes were averaged, if not explicitly stated
otherwise.

G. Statistical Model for Evaluation of Performance

Features extracted from the plaque regions in the B-mode
images were correlated to the visual classification as well as to
the histological results using the linear model [23], .

To facilitate comparisons between the performance of dif-
ferent features, each feature vector was offset and normalized
so that it ranged from zero to unity. The histological results,
e.g., , were also in the interval zero to unity.

The analysis of correlation between image features and
visual classification was done exactly the same way for
echogenicity and structure (identified by subscriptsand ,
respectively) and, therefore, only echogenicity is considered
below. The visual classification of echogenicity—denoted

for plaque —was given in three classes by the
independent variable and the feature values were specified
by the dependent variable, for feature . Specifically,
when the number of classes were would be a matrix
of height and width where each row of contains
zeros, except at the column which is identical to the class
where the value was unity

for
otherwise.

Likewise, was a column vector of height containing
the values of a given feature. The estimated regression
parameter set, , thus became a column vector of height



914 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 17, NO. 6, DECEMBER 1998

represents the least squares solution. When the elements
and are known , and the class values were

positively related to feature values, the three classes would
be defined by the intervals [0; ( )/2], ]( )/2;
( )/2], and ]( )/2; 1]. could subsequently
be used with the class intervals to find the estimated classes.
The following equation is used as a measure of how well the
estimated class agrees with the visual classification [1]

(2)

where and are the relative number of agreements
and the relative number of expected agreements by chance,
respectively. Therefore, . For echogenicity, the following
measure was used to quantify mean classification error:

, where and are the classes
given during ultrasound scanning and estimated from the
feature values, respectively. denotes mean value over
all plaques.

For the analysis of correlation between image features
and histological results, column vector represented the
histological results and column vector contained the values
of a given feature. In the linear model , where is
a column vector with only ones and with the same height as

. Thus holds the regression parameters (slopeand -axis

intercept). The least squares solution, , is
a maximum-likelihood estimate, provided follows a normal
distribution. The residue is: . Provided follows a
normal distribution, the -value is found as well [23]. The null
hypothesis is that the regression parameter is zero (slope of
regression line is zero), or that there is no correlation between

and . Finally, a measure of the mean error calculated over
all observations (plaques) is: . Note that using
absolute values instead of squared values, when calculating

and provides a more robust estimate of the
error [35].

All features were tested to evaluate their ability to predict
the visual classification and the histological results by applying
the following two-step procedure.

1) First and second-order features were calculated for the
entire data set ( 52 plaques) and correlated to both
the visual classification and to the histological results.
Then features fulfilling a given set of requirements—to
be stated in Section III—were extracted.

2) The hypothesis that these “significant” features could
be used for prediction was then tested by splitting the
data set into a training set (80%) and a test set (20%).
The analysis of the training set provided the regression
parameters, , and the test set could then be used to
evaluate the performance. Different training and test sets
were extracted times from the entire data set
by means of resampling. It was verified that the results
did not change with a larger number of re-samplings of
the training and test sets. If takes the value of
one of the error measures or calculated
for the plaques in the test set for a given feature at
resampling , then the mean test error for this feature

Fig. 3. The variation of mean gray level (uncalibrated) in the lateral scan
plane (s = 1) for the three types of regions outlined in Fig. 2. The data points
are connected together only to ease interpretation.

is calculated as

(3)

A measure similar to (3) is defined for the training set.

III. RESULTS

A. Mean Gray-Level Variation over Patients

The mean gray level inside the blood, muscle and plaque
regions shown in Fig. 2 is plotted in Fig. 3. The mean gray
level of the blood region only showed minor fluctuation (with a
few distinct outliers), when compared to the mean gray level
in the muscle region and plaque regions. For all three scan
planes, the mean gray level of the blood region was 402.
B. Correlation Between Visual Classification
and Image Features

Table II lists the features where the mean classification
error evaluated for all patients were below and

for echogenicity (three classes) and structure
(two classes), respectively. Examples of the classification fre-
quencies within the training and test sets for echogenicity and
plaque structure are provided in Figs. 4 and 5, respectively.

In both cases it is seen that performance within the training
set is quite close to performance within the test set. For
classification of echogenicity, the test set revealed that

and the agreement was 60%. For classification of structure,
the test set revealed that and agreement was 70%.
A in the interval [0.21; 0.40] and [0.41; 0.60] is normally
associated with fair and moderate strength of agreement,
respectively [1].

It should be expected that the more data there is available,
the better the prediction performance will be. Therefore, the
feature used to produce Fig. 4 was studied in more detail.
Specifically, in Fig. 6, the mean classification error is plotted
as a function of different combinations of scan planes. It is
seen, that—on average—the error decreases with increasing
number of scan planes.
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TABLE II
OVERVIEW OF FEATURES FORCLASSIFICATION OF ECHOGENICITY AND STRUCTURE, WHEN THE MEAN

CLASSIFICATION ERROR OVER ALL 52 PLAQUES WERE BELOW Rv;e = 0.42 AND Rv;s = 0.26, RESPECTIVELY

(a)

(b)

Fig. 4. (a) Classification frequencies (training set) for echogenicity class
estimated from image feature Median (f3) and echogenicity class found by
visual inspection. 1= echogenic, 2= intermediate and 3= anechoic. (b)
Performance of the feature as revealed by the test set.

C. Agreement Between Image Features and Histology

1) Plaque Contents Statistics:The mean and standard de-
viation of the histological results are given in Table III.
Compared to fibrous tissues, calcified materials exhibit increas-
ing echogenicity and increasing dependence on insonification
angle [34]. They are, therefore, potentially distinguishable
from each other, but because the relative volume of fibrous
tissues for a given plaque is , only

will be considered in addition to There
was no statistical significant correlation between and

or .
2) Correlation Between Soft Materials Content and Mean

Echogenicity: As the main constituents of the plaque were
soft materials and fibrous tissues, and these have different
backscattering characteristics, the analysis is commenced

(a)

(b)

Fig. 5. (a) Classification frequencies (training set) for structure class esti-
mated from image feature Contrast (15, 0�) (f22), and structure class found by
visual inspection. 1= homogeneous and 2= heterogeneous. (b) Performance
of the method as revealed by the test set.

by a comparison between relative volumetric content of
soft materials and mean echogenicity of the plaque regions.
The result, when all three scan planes were considered
together, is shown in Fig. 7, while Table IV lists-values
and correlation coefficients, when the planes were considered
individually and combined.

3) Overall Correlation Between Image Features and His-
tology: When testing all features, a feature was considered
significant if it fulfilled the condition: and
(with this low -value, only a few of the “best” features
were extracted). Based on this, significant features were found
for estimation of (with and without calcified plaques
removed from the analysis), but not for estimation of
The features are identified in Table V. Notice the small differ-
ence obtained when calcified plaques are removed. The result
for the feature associated with the smallest mean test error is
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Fig. 6. Mean classification error when using feature Median (f3) for predic-
tion of echogenicity class when each individual scan plane and combinations
hereof were used.

TABLE III
THE RELATIVE VOLUME OF PLAQUE MATERIALS

IN THE 52 PLAQUES ANALYZED HISTOLOGICALLY

SD SD SD

39.5 ± 13.6% 59.3± 13.8% 1.3± 1.5%

Fig. 7. Relative volumetric content of soft materials plotted against (unnor-
malized) Mean gray level (f4) of the plaque regions in all three planes. The
correlation coefficient is:�0.42. The regression line shows the least-squares
error fit. Note that the mean gray level has been adjusted as described in
Section II-V.

TABLE IV
p-VALUES AND CORRELATION COEFFICIENTS FOR THECORRELATION

BETWEEN RELATIVE VOLUMETRIC CONTENT OF SOFT MATERIALS AND

THE MEAN GRAY LEVEL (f4) EXTRACTED FROM INDIVIDUAL

SCAN PLANES AND THE AVERAGE OF ALL THREE SCAN PLANES

Plane p r

1 0.0004 �0.47
2 0.4 �0.12
3 0.0005 �0.47

1+2+3 0.002 �0.42

Fig. 8. Result of a specific training and test set for feature Contrast (30,
0�) (f22) used for predicting of soft materials. When the entire data set was
analyzed (52 plaques), the correlation coefficient becamer =- 0.50. When the
right most data point was removed from the set (i.e., the one with a feature
value of unity), the correlation coefficient becamer =- 0.38.

shown in Fig. 8. No Bonferroni correction was applied to the
-values of Table V, thus, the-values can only be used for

ranking the features.

IV. DISCUSSION

A. Correlation Between Image Features
and Visual Classification

These results featured the best correlation, however, a
number of reasons could be responsible for the fact that the
agreement was not higher. The visually estimated class gives
an overall impression of the appearance of the entire plaque
when imaged in real time with at least three different scan
planes. The class estimated by feature extraction was based
on only three still images per patient. Although intended to,
these may not be fully representative of the entire plaque. On
the other hand, it is clear from Fig. 6, that the more planes that
were used in the analysis, the smaller the classification error.

For classification of echogenicity, the agreement is only fair.
One of the reasons for that is the definition of classes: plaques
that created an acoustic shadow were mainly classified by the
ultrasonographer as echogenic. However, such a plaque is not
necessarily (uniformly) echogenic. Taken into consideration
that 27% of the plaques had shadows, this could be one of
the main explanations. Careful investigation of the mean gray
level of the plaques that were classified as echogenic showed
a bimodal histogram.

The features listed in Table II can be physically related to
the characteristics that were to be predicted: echogenicity is
closely related to the Median gray level () of the regions and
to Percentiles ( ) of the histograms of the regions. With
respect to structure, the two first-order-features are the same
as for echogenicity, and one explanation for this unexpected
result is that the more heterogeneous the plaque region ap-
pears, the higher the overall gray level (analyzing the relation
between the two groups showed that while most anechoic
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TABLE V
OVERVIEW OF FEATURES FORPREDICTION OF RELATIVE VOLUME OF SOFT MATERIALS AND RELATIVE VOLUME OF SOFT MATERIALS WHEN

CALCIFIED PLAQUES WERE REMOVED FROM THE ANALYSIS. THE p-VALUES WERE CALCULATED FOR THE TRAINING SET AS THE

AVERAGE OF THE 50 RESAMPLINGS. THE REGRESSIONPARAMETERS WERE IN THE FOLLOWING RANGES: 0:432<�< 0:473 AND

�0:37<� < � 0:272: � AND � ARE THE y-AXIS INTERSECTION AND THE SLOPE OF THE REGRESSIONLINE, RESPECTIVELY

plaques were classified by the operator as homogeneous, many
echogenic plaques were classified as heterogeneous). On the
other hand, the three second-order features are all measures
of the degree of homogeneity of the image [e.g., the more
heterogeneous the lower the value of Correlation ()]. Note,
though, that especially for prediction of the structure, the
best performing feature will depend on the human observer’s
perception of homogeneous and heterogeneous structures.

In a similar study [27], 47 high-quality images were
recorded from ten patients and analyzed with four first-
order and two second-order features. Only Mean gray level
( ) and Entropy ( ) distinguished between the classes in
echogenicity and structure, respectively. In our study, Mean
gray level ( ) performed well with respect to echogenicity
while Entropy ( ) did not appear well suited with respect to
structure. One of the major differences in methodology was
that the visual classification apparently was done from the
still images in their study (as compared to visual classification
during examination in our study), which might in part explain
their better results.

B. Correlation Between Image Features and Histology

When using all the plaques for prediction of soft materi-
als, statistically significant correlation was found for a few
features, but the training and test errors were much too high
for the method to be used in prediction of relative volumetric
content in individual plaques.

approximately followed a normal distribution, so
that the linear regression provided a maximum likelihood es-
timate. Unfortunately, the variation in the signal, , that
was to be predicted—as revealed by the standard deviations
in Table III—was close to the test error as revealed from
Table V.

When the number of scan planes was varied, as done in
Table IV, the picture was not as clear as in Fig. 6. This
suggests that the results are less reliable compared to those
for visual classification. The same tendency was found for the
investigation in Section III-C3 (details not presented).

The features in Table V for overall correlation have a
straight-forward physical interpretation: The higher the rel-

ative volume of soft materials, the lower the echogenicity,
the Percentiles ( ) and the Contrast ( ). Table V
also reveals that the performance does not get better when
plaques with a high relative volume of calcification were
removed. This was unexpected, and is another indication
that the content of information in the ultrasound images at
present appears insufficient for prediction of relative material
volume.

The training and test set method was introduced to try
to avoid fitting the data when analyzing a large number of
features and to be immune to a situation where a few data
points have main influence on the results. It is seen that the
performances of the training and test sets are very close,
indicating that the size of the data set is large enough to
provide stable estimates for the given model.

Another study [11] has reported on correlation between
content of soft materials and mean gray level in the plaque
regions. A comparison between this study and the present is
given in Table VI. Both studies yielded a statistical significant
correlation. When furthermore comparing the scatter plot in
Fig. 7 with the corresponding plot in their work, it can be
observed that the correlation was comparable.

C. Limiting Factors

An overview of the most important limiting factors is
provided in Table VII, and elaborated on below.

1) Pulse-echo ultrasound is limited by geometrical effects
and diffraction effects: A given plaque element will yield
different echo signals depending on itslocation and
orientationrelative to the transducer. This variation can
be dramatic for fibrous tissues and especially calcified
tissues [34]. As the orientation is unknown for the
3D plaques studied here [e.g., Fig. 2(b)], this effect is
likely to introduce a large unknown modulation of the
echo signal, which will behave as noise in the analysis
presented here. A possible method that can reduce the
angle-dependence is spatial compound imaging [21].
Finally, the echo signal is changed by the intervening
tissue layer between transducer and plaque and this
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TABLE VI
COMPARISON OF OURSTUDY TO ANOTHER STUDY, WITH RESPECT TOCORRELATION

BETWEEN MEAN GRAY LEVEL VALUE AND RELATIVE VOLUME OF SOFT MATERIALS

TABLE VII
OVERVIEW OF THE MOST IMPORTANT FACTORS LIMITING THE PERFORMANCE OF THEMETHODS USED. ALSO GIVEN ARE POSSIBLE STRATEGIES FOR

IMPROVING PERFORMANCE. THE LIST IS ATTEMPTED GIVEN IN DECREASING ORDER OF IMPORTANCE WITHIN THE GROUPS

change is spatially varying. All these effects are likely
to give low performance in reproducibility studies for
the same patient.

2) The intervening tissue layer in the ultrasound path
will be different from patient to patient and thus the
absolute level of backscattered energy from the plaque
will feature an inter-patient variation. The approach used
in the present study to compensate for this variation has
a number of drawbacks of which the most important
could be the contribution of signals from sidelobes and
grating lobes to the mean gray level of the rectangular
“blood” region in the image. The most obvious solution
to this problem is to apply stationary echo-cancelling to
the raw signal from blood [33]. To assess the impact of
the present calibration technique on the results of this
study, it was found that removing the calibration only
yielded slightly poorer performance. To further address
the problem of different overall gray-level values, the
value of each feature due to a linear operation on
the original image is tabulated in the Appendix. It
can be observed, that except for Correlation (), all
the features identified as significant in this study are

susceptible to a linear transformation of the original
image.

3) For anechoic regions in the plaque, the echo signal might
be dominated by noise or echoes from the sidelobes and
grating lobes of the ultrasound transducer. Furthermore,
acoustic shadowing (e.g., cause by calcification) may
cause part of the plaque to be “invisible” and, therefore,
not included in the outline.

4) The ultrasonic information was only obtained from three
perpendicular planes through the plaque and not the en-
tire 3D plaque structure which is analyzed histologically.
The associated error depends on the degree of spatial
variation in materials inside the plaque.

5) There are several levels of information loss in the
signal processing: The received echo signal is amplified,
digitized, envelope detected and logarithmically com-
pressed. These data are then used in a scan conversion al-
gorithm to calculate the gray-level image which is finally
“optimized” to provide the most “pleasant-looking” im-
age on the screen. The image is next converted to an
analogvideo signal. In this study, the image is further-
more stored on a video recorder before it is digitized
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TABLE VIII
OVERVIEW OF FIRST-ORDER FEATURES

(again) by a frame grabber. The noise due to the video
recorder is believed to play a minor—but not negligi-
ble—role, because the rms error was about five gray lev-
els compared to the mean (over patients) of the Standard
deviation ( ) of the gray level of the pixels of the plaque
region(s) which was 12 and because feature calculation
involved integration over the entire plaque region.

6) There could be an uncertainty in location of outline
of plaque region(s), because it can be very difficult to
distinguish between plaque and other structures such as
healthy arterial wall or blood. For instance, if blood
was included, then the apparent amount of anechoic
material would increase. CFM was used as a guidance
in placing the outline, but the colored area in a CFM
image—especially for regions of slow flow—is very
susceptible to scanner setting (gain and highpass filter
cutoff). A reproducibility study [19] has been made on
a larger set of images, from the lateral scan plane only.
Specifically, the outlines on 58 lateral images were re-
drawn about 3–6 mo. later by the same investigator. The
mean bias between the two independent determinations
of gray scale median values was0.4. The coefficient of

variation for this measure was 5.5%. This suggests that
the outline location is fairly reproducible, even though
gray scale median probably is the feature least sensitive
to the exact location of outline.

7) The histological analysis, which is used as a “golden
standard,” has limitations as well: The plaque is “only”
sampled (cross-sectionally) every 2–3 mm and the re-
sults are interpreted subjectively by a human observer. A
reproducibility study [19] was made for the histological
analysis as well. The mean bias for a repeated analysis
by the same pathologist of ten plaques were 0.6%
and 1.1% for lipid and fibrous tissues, respectively.
The corresponding coefficients of variations for these
measures were 3.5% and 2.2%, respectively.

8) One of the problems with the subjective human inter-
pretation is that histological separation between area
of e.g., calcification and lipid may be difficult since
calcification may be present within a region with lipid.
Also, the tissue class, “fibrous tissues” may have smaller
or larger amounts of soft material components interpo-
sitioned between the fibers without this showing up in
the histological results.
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TABLE IX
OVERVIEW OF SECOND-ORDER FEATURES BASED ON THE GLCM WITH G2 GRAY LEVEL CHANGES. F17 � F23 ARE IMPLICIT FUNCTIONS OF (d; �)

9) One of the problems with the second-order features is
the relatively small plaque region size and the corre-
sponding low count in the GLCM. Specifically, in this
study, the values of the pixels in the plaque regions
for the 52 plaques in the lateral scan plane occupied
a gray-level interval of length approximately 42 22.
Thus, only a small region of about 4040 cells in
the GLCM contains information. As the approximate
number of occurrences has been found to be 3500 (total
mean count in the GLCM for the different step sizes
and angles used), each cell in the 4040 region will
contain, on average, approximately two occurrences.
Another potential problem is that when the step size
in the lateral direction is too large, the calculation
is further degraded due to lateral variations in the
attenuation of the intervening tissue layer. Eventually,
it is possible that better performance could be obtained
by selecting the parameters for the second-order features
according to orientation and location (depth) of the
plaque.

In conclusion, the combined effect of the large number of
uncontrolled factors that may influence the gray level of the
plaque regions in clinical B-mode images, the corresponding
large inter-patient variation and the uncertainty in the histo-
logical analysis, seem to explain the only moderate agreement
between image features and plaque constituents.

V. CONCLUSIONS

It has been shown that plaque appearance (echogenicity
and structure)—as revealed by the ultrasonographer during
scanning—can be predicted from still ultrasound images with
a reasonable degree of accuracy. This result is especially
important in multi-center studies, where interobserver and
intraobserver variations make comparisons difficult.

The attempt to predict relative plaque material volume
from the still images showed statistically significant results,

yet the results were associated with training and test errors
comparable to the variation in material content from plaque
to plaque. Ignoring possible inaccuracies in the histological
analysis, this indicates that the present ultrasound imaging
technology is clinically inapplicable for use in prediction
of soft and calcified relative plaque volume in individual
patients. The main reasons are likely to be related to both
the limitations of B-mode ultrasound imaging (geometrical
effects, diffraction, etc.) and to the method (too few scan
planes, lack of access to raw ultrasound data, etc.). Future
methods based on ultrasound imaging for prediction of plaque
materials should try to improve on as many of these factors
as possible.

APPENDIX

FIRST- AND SECOND-ORDER FEATURES

In this Appendix, all summations runs from zero to ,
unless otherwise noted. The first-order features are tabulated
in Table VIII. They were either calculated directly from the
image region, , or from the normalized gray-level
histogram, of . contains gray levels
from zero to . The third column of Table VIII contains
the value of the feature after a linear gray-level transformation
of the original image

(A1)

where and are constants and . It is assumed that
have values in the interval [0; ] so that truncation

does not occur. The new histogram becomes
.

The second-order features [5], [29] given in Table IX are
based on the normalized co-occurrence matrix, , so that

. The expressions in Table IX use the following
sums of rows and columns in the GLCM:
and together with the following mean
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values and standard deviations

(A2)

(A3)

The linear operation in (A1) on the original image gives the
following value of the GLCM:

and these row and column sums:
and The mean and standard deviations
becomes: and

Note that some of the equations presented in the last
columns of Tables VIII and IX are still approximate, however,
because the discretization involved with calculation of the
histograms and the GLCM’s introduces a small nonlinear
effect.

REFERENCES

[1] D. G. Altman, Practical Statistics for Medical Research., 1st. ed.
London, U.K.: Chapman & Hall, 1996.

[2] G. Belcaro, G. Laurora, M. R. Cesarone, M. T. De Sanctis, L. Incandela,
E. Fascetti, G. Geroulakos, G. Ramaswami, A. Pierangeli, and A. N.
Nicolaides, “Ultrasonic classification of carotid plaques causing less
than 60% stenosis according to ultrasound morphology and events,”
J. Cardiovasc. Surg., vol. 34, pp. 287–94, 1993.

[3] C. Bishop, Neural Networks for Pattern Recognition.Oxford, UK:
Oxford Univ. Press, 1995.

[4] J. S. Bleck, U. Ranft, M. Gebel, H. Hecker, M. Westhoff-Bleck, C.
Thiesemann, S. Wagner, and M. Manns, “Random field models in the
textural analysis of ultrasonic images of the liver,”IEEE Trans. Med.
Imag., vol. 15, pp. 796–801, Dec. 1996.

[5] J. M. Carstensen, “Description and simulation of visual texture,” Ph.D.
dissertation no. 59. Department of Mathematical Modeling, Technical
Univ., Lyngby, Denmark, 1992.

[6] E. M. Cave, N. D. Pugh, R. J. Wilson, G. R. J. Sissons, and J. P.
Woodcock, “Carotid artery duplex scanning: Does plaque echogenicity
correlate with patient symptoms?,”Eur. J. Vasc. Endovasc. Surg., vol.
10, pp. 77–81, 1995.

[7] S. M. Collins, D. J. Skorton, N. V. Prasad, B. O. Olshansky, and J. A.
Bean, “Image texture in two dimensional echocardiography,”Comput.
Cardiol., 1983, pp. 113–116.

[8] “European carotid plaque study group (ECPSG): Carotid artery plaque
composition—Relationship to clinical presentation and ultrasound B-
mode imaging,”Eur. J. Vasc. Endovasc. Surg., vol. 10, pp. 23–30,
1995.

[9] “European carotid surgery trialist’ collaborative group (ECST). MRC
European carotid surgery trial: Interim results of symptomatic patients
with severe (70-99%) or with mild (0-29%) carotid stenosis,”Lancet,
vol. 337, pp. 1235–1243, 1991.

[10] N. El-Barghouty, G. Geroulakos, A. Nicolaides, A. Androulakis, and
V. Bahal, “Computer-assisted carotid plaque characterization,”Eur. J.
Vasc. Endovasc. Surg., vol. 9, pp. 389–393, 1995.

[11] N. M. El-Barghouty, T. Levine, S. Ladva, A. Flanagan, and A. Nico-
laides, “Histological verification of computerized carotid plaque char-
acterization,” Eur. J. Vasc. Endovasc. Surg., vol. 11, pp. 414–416,
1996.

[12] W. E. Faught, M. A. Mattos, P. S. van Bemmelen, K. J. Hodgson,
L. D. Barkmeier, D. E. Ramsey, and D. S. Sumner, “Color-flow
duplex scanning of carotid arteries: New velocity criteria based on
receiver operator characteristic analysis for threshold stenoses used in
the symptomatic and asymptomatic carotid trials,”J. Vasc. Surg., vol.
19, no. 5, pp. 818–828, 1994.

[13] T. M. Feeley, E. J. Leen, M.-P. Colgan, D. J. Moore, DO’B. Hourihane,
and G. D. Shanik, “Histologic characteristics of carotid artery plaque,”
J. Vasc. Surg., vol. 13, no. 5, pp. 719–724, 1991.

[14] S. Finette, A. Bleier, and W. Swindell, “Breast tissue classification using
diagnostic ultrasound and pattern recognition techniques: I. Methods of
pattern recognition,”Ultrason. Imag., vol. 5, pp. 55–70, 1983.

[15] S. Finette, A. R. Bleier, W. Swindell, and K. Haber, “Breast tissue
classification using diagnostic ultrasound and pattern recognition tech-
niques—II: Experimental results,”Ultrason. Imag., vol. 5, pp. 71–86,
1983.

[16] L. J. Fontenelle, S. C. Simper, and T. L. Hanson, “Carotid duplex
scanning: Preferred modality for selecting patients for endarterectomy,”
J. Vasc. Technol., vol. 18, no. 6, pp. 345–349, 1994.

[17] G. Geroulakos, J. Domjan, A. Nicolaides, J. Stevens, N. Labropoulos,
G. Ramaswami, G. Belcaro, and A. Mansfield, “Ultrasonic carotid
artery plaque structure and the risk of cerebral infarction on
computed tomography,”J. Vasc. Surg., vol. 20, no. 2, pp. 263–266,
1994.

[18] M.-L. M. Grønholdt, B. M. Wiebe, H. Laursen, T. G. Nielsen, T. V.
Schroeder, and H. Sillesen, “Lipid-rich carotid artery plaques appear
echolucent on ultrasound B-mode images and may be associated with
intraplaque haemorrhage,”Eur. J. Vasc. Endovasc. Surg., vol. 14, pp.
439–445, 1997.

[19] M. L. M. Grønholdt, B. G. Nordestgaard, B. M. Wiebe, J. E. Wilhjelm
& H. Sillesen, “Echolucency of computerized ultrasound images of
carotid atherosclerotic plaques are associated with increased levels of
triglyceride-rich lipoproteins as well as increased plaque lipid content,”
Circ., vol. 97, pp. 34–40, 1998.

[20] A. Iannuzzi, T. Wilcosky, M. Mercuri, P. Rubba, F. A. Bryan, and
M. G. Bond, “Ultrasonographic correlates of carotid atherosclerosis in
transient ischemic attack and stroke,”Stroke, vol. 26, no. 4, pp. 614–619,
1995.

[21] S. K. Jespersen, J. E. Wilhjelm, and H. Sillesen, “Multi-angle compound
imaging,” Ultrason. Imag., vol. 20, pp. 81–102, 1998.

[22] J. M. Johnson, M. M. Kennelly, D. Decesare, S. Morgan, and A.
Sparrow, “Natural history of asymptomatic carotid plaque,”Arch Surg.,
vol. 120, pp. 1010–1012, 1985.

[23] B. Jones,Statistics Toolbox for Use with MATLAB.Natick, MA, USA:
The MathWorks Inc., 1994.

[24] Y. M. Kadah, A. A. Farag, J. M. Zurada, A. M. Badawi, and A.-B. M.
Youssef, “Classification algorithms for quantitative tissue characteriza-
tion of diffuse liver disease from ultrasound images,”IEEE Trans. Med.
Imag., vol. 15, pp. 466–478, Aug. 1996.

[25] M. Langsfeld, A. C. Gray-Weale, and R. J. Lusby, “The role of
plaque morphology and diameter reduction in the development af new
symptoms in asymptomatic carotid arteries,”J. Vasc. Surg., vol. 9, no.
4, pp. 548–557, 1989.

[26] G. L. Londrey, D. P. Spadone, K. J. Hodgson, D. E. Ramsey, L. D.
Barkmeier, and D. S. Sumner, “Does Color-flow imaging improve the
accuracy of duplex carotid evaluation?,”J. Vasc. Surg., vol. 13, no. 5,
pp. 659–663, 1991.

[27] A. M. Mazzone, M. P. Urbani, E. Picano, M. Paterni, E. Borgatti, A.
De Fabritiis, and L. Landini, “In vivo ultrasonic parametric imaging of
carotid atherosclerotic plaque by videodensitometric technique,”Angiol.,
vol. 46, no. 8, pp. 663–672. 1995.

[28] M. L. Neale, J. L. Chambers, A. T. Kelly, S. Connard, M. A. Lawton,
J. Roche, and M. Appleberg, “Reappraisal of duplex criteria to assess
significant carotid stenosis with special reference to reports from the
North American Symptomatic Carotid Endarterectomy Trial and the
European Carotid Surgery Trial,”J. Vasc. Surg., vol. 20, no. 4, pp.
642–649, 1994.

[29] D. Nicholas, D. K. Nassiri, P. Garbutt, and C. R. Hill, “Tissue charac-
terization from ultrasound B-scan data,”Ultrasound in Med., Biol., vol.
12, no. 2, pp. 135–143, 1986.

[30] “North American symptomatic carotid endarterectomy trial collaborators
(NASCET): Beneficial effect of carotid endarterectomy in symptomatic
patients with high-grade carotid stenosis,”New Eng. J. Med., vol. 325,
no. 7, pp. 445–453, 1991.

[31] T. F. O’Donnell, L. Erdoes, W. C. Mackey, J. McCullough, A. Shepard,
P. Heggerick, J. Isner, and A. D. Callow,” “Correlation of B-mode
ultrasound imaging and arteriography with pathologic findings at carotid
endarterectomy,”Arch Surg., vol. 120, pp. 443–449, 1985.

[32] L. W. O’Holleran, M. M. Kennelly, M. McClurken, and J. M. Johnson,
“Natural history of asymptomatic carotid plaque,”Amer. J. of Surg.,
vol. 154, pp. 659–662, 1987.

[33] P. C. Pedersen, “Ultrasound technique for arterial plaque characteri-
zation based on absolute backscatter measurements,”Ultrason. Imag.,
vol. 19, no. 1, pp. 46–47. 1997.

[34] E. Picano, L. Landini, A. Distante, M. Salvadori, F. Lattanzi, M.
Masini, and A. L’Abbate, “Angle dependence of ultrasonic backscatter
in arterial tissues: A studyin vitro,” Circ., vol. 72, no. 3, pp. 572–576,
1985.



922 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 17, NO. 6, DECEMBER 1998

[35] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,
Numerical Recipes in C. The Art of Scientific Computing.Cambridge,
U.K.: Cambridge Univ. Press, 2nd ed., 1992, p. 703.

[36] U. Raeth, D. Schlaps, B. Limberg, I. Zuna, A. Lorenz, G. van Kaick,
W. J. Lorenz, and B. Kommerell, “Diagnostic accuracy of computerized
B-scan texture analysis and conventional ultrasonography in diffuse
parenchymal and malignant liver disease,”J. Clin. Ultrasound, vol. 13,
pp. 87–99, 1985.

[37] L. M. Reilly, R. J. Lusby, L. Hughes, L. D. Ferrell, R. J. Stoney, and W.
K., “Carotid plaque histology using real-time ultrasonography. Clinical
and therapeutic implications,”Amer. J. Surg., vol. 146, pp. 188–193, 1983.

[38] A. V. Sterpetti, R. D. Schultz, R. J. Feldhaus, K. L. Davenport, M.
Richardson, C. Farina, and W. J. Hunter, “Ultrasonographic features of
carotid plaque and the risk of subsequent neurologic deficits,”Surg.,
vol. 104, no. 4, pp. 652–660, 1988.

[39] F. M. J. Valckx and J. M. Thijssen, “Texture classification of echographic
images by means of the co-occurrence matrix,”Acoust. Imag., vol. 22,
pp. 299–302, 1996.

[40] C.-M. Wu, Y.-C. Chen, and K.-S. Hsieh, “Texture features for classi-
fication of ultrasonic liver images,”IEEE Trans. Med. Imag., vol. 11,
pp. 141–152, Apr. 1992.


