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Simulation of non-linear ultrasound fields

Jørgen Arendt Jensen, Paul D. Fox, Jens E. Wilhjelm and Louise Kold Taylor

Center for Fast Ultrasound Imaging, Ørsted•DTU, Bldg. 348,
Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark

Abstract - An approach for simulating non-linear ultra-
sound imaging using Field II has been implemented using
the operator splitting approach, where diffraction, attenua-
tion, and non-linear propagation can be handled individually.
The method uses the Earnshaw/Poisson solution to Burgers’
equation for the non-linear propagation. The speed of sound
is calculated from the instantaneous pressure of the pulse and
the nonlinearity B/A parameter of the medium. The harmonic
field is found by introducing a number of virtual planes in
front of the aperture and then propagating the pulse using
Burgers’ solution between the planes.

Simulations on the acoustical axis of an array transducer
were performed and compared to measurements made in a
water tank. A 3 MHz convex array transducer with a pitch
of 0.53 mm and a height of 13 mm was used. The electronic
focus was at 45 mm and 16 elements were used for emission.
The emitted pressure was 1.4 MPa measured 6 mm from the
aperture by a Force Institute MH25-5 needle hydrophone in
a water bath. The build-up of higher harmonics can here be
predicted accurately up to the 5th harmonic. The second har-
monic is simulated with an accuracy of± 2.6 dB and the third
harmonic with± 2 dB compared to the water bath measure-
ments. Point spread functions (PSFs) were also calculated
and measured. They all showed that the second and third har-
monic PSFs are narrower than for the first harmonic, with a
good resemblance between the measured and simulated PSFs.

The approach can also be extended to simulate non-linear
ultrasound imaging in 3D using filters or pulse inversion for
any kind of transducer, focusing, apodization, pulse emission
and scattering phantom. This is done by first simulating the
non-linear emitted field and assuming that the scattered field
is weak and linear. The received signal is then the spatial
impulse response in receive convolved with the emitted field
at the given point.

I I NTRODUCTION

Modern medical ultrasound scanners employ the non-linear
propagation of ultrasound to generate harmonic images. Such
images have resulted in a higher contrast and a lower influ-
ence from side and gratings lobes especially for cardiac imag-

ing. For the optimization of the imaging, it is important to
understand the build-up of the non-linear fields and how dif-
ferent transducer parameters affect the non-linear generation.
The studying of these effects is greatly facilitated by a sim-
ulation tool, where parameter studies can easily be made. In
this paper a solution based on Field II [1] is investigated. The
program makes it possible to study all kinds of transducer
geometries, focusing and apodization schemes and general
imaging can be implemented. The non-linear part of the pro-
gram is based on the Earnshaw/Poisson solution to Burgers’
equation for the non-linear propagation.

In solving the nonlinear differential equations, it can be
an advantage to decouple the different effects (in this study
diffraction, attenuation, and nonlinearity) and calculate each
effect separately. The sum of the effects is then found by
adding all effects at each integration step. Each integration
step handles the influence of the effects over a limited spa-
tial range based on the simulated acoustic field determined at
the previous step. This method is referred to as the Operator
Splitting Method [2, 3].

The purpose is here to expand Field II’s applicability to
also include the nonlinear effects, so that the generation of
higher harmonics created by medical ultrasound array trans-
ducers can be studied. The approach will be based on the
operator splitting method in a similar manner as Tavakkoli et
al. (1998) and Remenieras et al. (2000), but using the spa-
tial impulse response approach based on the Rayleigh inte-
gral together with the Earnshaw/Poisson solution to Burgers’
Equation. Attenuation is handled by Field II as a filter on the
spatial impulse responses. This paper expands upon the non-
linear propagation of virtual planes previously described in
[4], and shows how point spread functions can be calculated
by the program.

II PROPAGATION MODEL

The Westervelt Equation [5] describes the nonlinear propaga-
tion of a sound wave. It is a second order approximation for
thermoviscous fluids derived from expansions of equations
of mass conservation, momentum conservation, entropy bal-
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ance, and thermodynamic state [6]. The equation reads:
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where∇2 = ∂2/∂r2 is the Laplacian operator,P is the change
in pressure relative to ambient pressure, and is a function of
time, t, and spatial position,r . The small-signal sound speed
is represented byc0, ρ0 is the density of the medium, andδ is
the diffusivity of sound describing attenuation in the medium.
The first two terms in the parenthesis represent diffraction
and linear propagation, and the third term describes thermo-
viscous losses. The nonlinear effect on wave propagation is
governed by the last term on the left hand side. The parameter
β determines the nonlinearity. It is defined asβ = 1+B/2A,
where B/A is the ratio describing nonlinearities in media.
Usually β takes values in the range 6-10 for biological tis-
sues [6].
To solve and thereby use (1) for the simulation using the op-
erator splitting method, it will be appropriate to look closer
at (1) and rewrite it. The loss term represents a quadratic de-
pendence with frequency [6]. Since the attenuation (in dB)
shows a close to linear dependence with frequencies in the
ultrasound region for most biological tissues [7], this term is
not appropriate. For this reason,δ is set equal to zero at this
point, and a frequency dependent attenuation is introduced
later as a filter on the pressure waveform. The lossless ver-
sion of (1) reads:
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At this point a retarded framework, where the observer fol-
lows the wave, is introduced. The new time variable is de-
fined asτ = t−|r |/c0 = t− r/c0, and the above equation can
be transformed to:
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By means of operator splitting [2, 3], a numerical integration
can be carried out by solving the equation for one effect at
the time over a small integration step,∆r, and then adding the
two effects. By transforming back to the original time axist =
τ + |r|/c0, the contribution associated with the first becomes
the lossless linear equation

(
∂2/∂r2−1/c2

0 ·∂2/∂t2
)

P = 0,
which may be solved using the spatial impulse response [8, 9]
implemented and used in Field II [10]. The second term
however represents the lossless nonlinear Burger’s equation
[11, 6], which after differention of the squared pressure term
may be written
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Figure 1:Virtual ultrasound planes for propagating the non-
linear field.

In the event that1/cr may be considered constant, this equa-
tion has solutionP = P(r,τ) which propagates spatially from
r to r +∆r according to

P(r +∆r,τ) = P(r,τ+∆τ)
∆τ = −∆r/cr = ∆rβP(r,τ)/ρ0c3

0. (5)

This is the Earnshaw/Poisson solution [6]. Hence, if we con-
sider step sizes∆r sufficiently small to approximatecr =
−ρ0c3

0/βP(r,τ) as constant (i.e.P constant), then the nonlin-
ear componentP(r +∆r,τ) may be computed simply as the
time shifted fieldP(r,τ+∆τ) at the previous position posi-
tion r. Note here that since∆τ is a function ofP(r,τ), the
time shift is not constant as the wave propagates, and it is this
mechanism which introduces the nonlinear distortions into
the wavefront.

The simulation of the acoustic field generated due to the
diffraction, attenuation, and nonlinearity is handled by fol-
lowing the simulation setup shown in Fig.1. A number of
successive steps are taken from the transducer and out into
the field. Each propagation step evaluates the pressure wave-
forms on elements in a plane - a virtual aperture, which serves
as input aperture for the next propagation step. The following
steps are, thus, made:

1. Calculate the attenuated pulses at the center position of
the elements in the next virtual plane.

2. Disturb the pulses to make non-linear propagation.

3. Set pulses as excitation for the next plane.

4. Repeat the procedure for the next virtual plane.

III S IMULATION AND EXPERIMENTAL SETUPS

The ability to simulate the propagation of an acoustic field
with the above described method is determined by comparing
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Center frequency,f0 3 MHz
No. of cycles 5
No. of elements 16
Pitch 0.525 mm
Kerf 40µm
Transverse length 13 mm
Radius of curvature 60 mm
Acoustical focus 70 mm
Electronic focus 45 mm
Distance between measurements 6 mm
Number of measurements 45
No. of lines averaged 8

Table 1:Experimental parameters

Lateral length, x 20.5 mm
Transverse length, y 15.5 mm
Element size,∆x 0.5 mm
Element size,∆y 0.5 mm
Distance between planes,∆z 6 mm
Density of medium,ρ0 1000 kg/m3

Nonlinearity parameter,β 3.5
Propagation step size,∆r 0.5 mm
Pressure at depth 6 mm,P0 1.4 MPa
Speed of sound,c0 1480 m/s

Table 2:Simulation parameters

the simulated data to data acquired from hydrophone mea-
surements in a water tank. Table1 and2 lists the relevant pa-
rameters for both the measurements and the simulations. The
measured waveforms were obtained by emitting a pulse with
a 3 MHz convex array probe on a B-K Medical 2102 scanner
and LeCroy 9450 oscilloscope at a sampling frequency of 200
MHz coupled to a Force Institute MH25-5 needle hydrophone
in a water bath. The 3 MHz convex array transducer has an
element width of 0.53 mm and a height of 13 mm. The elec-
tronic focus was at 45 mm, the elevation focus at 70 mm, and
16 elements were used for emission.

Simulations on and off the acoustical axis of an array trans-
ducer were performed and compared to measurements made
in a water tank.

IV RESULTS

An example of a simulated pulse and the corresponding spec-
trum is shown in Fig.2. The solid line is the measured pulse
and the dashed line is the simulated responses. It can be seen
that the general shape of the pulse is predicted accurately, but
the amplitude is slightly underestimated primarily due to the
underestimation of the higher harmonics.

The resulting point spread functions are shown for in
Fig. 3. For contour lines at -6, -12, -18 and -24 dB the point
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Figure 2:Example of simulated and measured pulse (top) and
corresponding spectrum (bottom) atz= 24mm.

spread functions for the fundamental, second, and third har-
monic are shown as a function of lateral position. The sim-
ulated data are shown on the top and the measured on the
bottom. Roughly the same lateral extend of the fields are pre-
dicted by the simulation as found in the measurements. There
is, however, more noise in the simulated response in the -24
dB contours and here the PSFs are not correctly predicted.

The build-up of the harmonic components are shown
Fig. 4. On the left is shown the second harmonic relative to
the first harmonic and in the right is shown the third harmonic
relative to the first harmonic. The rise of the harmonics with
depth is predicted by the simulation with an overall standard
deviation of 2.6 dB for the second harmonic and 2 dB for the
third harmonic compared to the measured data.

V EXTENSION TO NON-LINEAR IMAGING

SIMULATION

The approach can also be extended to simulate non-linear ul-
trasound imaging in 3D using filters or pulse inversion for
any kind of transducer, focusing, apodization, pulse emission
and scattering phantom. This is done by first simulating the
non-linear emitted field and assuming that the scattered field
is weak and linear. The received signal is then the spatial im-
pulse response in receive convolved with the emitted field at
the given point. For linear array imaging, the emitted field is
only calculated once, since it is the same for all image lines.
The received signal is then found by moving the scatterers
into the correct position compared to the emitted field. The
non-linear emitted field at the different points is then calcu-
lated by finding the plane closets to the point and use this
in the calculation, and then find the received signal by con-
volving with the spatial impulse response for the receiving
aperture.

Tissue mimicking computer phantoms can then be made
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Figure 3: Simulated (top) and experimental (bottom) point
spread functions obtained at a distance ofz= 24mm.

using a collection of point scatterers as described in [12].
Their scattering strength is adjusted according to the physi-
cal structure of the object, and this can be used to simulate
both cyst phantoms and real anatomic structures.
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