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Didier Vray, Member, IEEE, and Philippe Delachartre

Abstract—This paper investigates a new approach de-
voted to displacement vector estimation in ultrasound
imaging. The main idea is to adapt the image formation to a
given displacement estimation method to increase the preci-
sion of the estimation. The displacement is identified as the
zero crossing of the phase of the complex cross-correlation
between signals extracted from the lateral direction of the
ultrasound RF image. For precise displacement estimation,
a linearity of the phase slope is needed as well as a high
phase slope. Consequently, a particular point spread func-
tion (PSF) dedicated to this estimator is designed. This
PSF, showing oscillations in the lateral direction, leads to
synthesis of lateral RF signals. The estimation is included
in a 2-D displacement vector estimation method. The im-
provement of this approach is evaluated quantitatively by
simulation studies. A comparison with a speckle tracking
technique is also presented. The lateral oscillations improve
both the speckle tracking estimation and our 2-D estima-
tion method. Using our dedicated images, the precision of
the estimation is improved by reducing the standard devi-
ation of the lateral displacement error by a factor of 2 for
speckle tracking and more than 3 with our method com-
pared to using conventional images. Our method performs 7
times better than speckle tracking. Experimentally, the im-
provement in the case of a pure lateral translation reaches
a factor of 7. Finally, the experimental feasibility of the 2-
D displacement vector estimation is demonstrated on data
acquired from a Cryogel phantom.

I. Introduction

Tissue elasticity imaging with ultrasound deals with
the mapping of any parameter characterizing the elas-

tic properties of a given medium using ultrasound echo
data. There are different ways to do tissue elasticity imag-
ing with ultrasound which differ by the way the tissue
under investigation is excited. It is important to make a
distinction between the static approaches and the dynamic
ones. Dynamic excitation of the tissue can be made by a
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dynamic vibration, which is normally referred to as sonoe-
lastography [1], [2], or by a pulsed low frequency vibration,
which is normally referred to as transient elastography [3],
[4]. In this paper we will focus on the static approach, also
called elastography, as it has been introduced by Ophir et
al. [5]. Here the principle is to estimate the local displace-
ment or the strain field between two ultrasound images of
a medium. The two images are acquired at two different
static compression states. Elasticity has been shown to be
a good candidate for characterization of the development
of different pathologies [6], [7].

The early approaches to elastography have been at-
tempts to characterize the tissue elasticity by simply con-
sidering the axial strain image. If the applied stress is axial,
it is this direction that features the largest strain. However,
knowledge of only one component of the strain field is not
enough to provide a precise and quantitative investigation
of the medium [8]. As a consequence, a number of methods
have been used to estimate the lateral component of the
displacement field [9]–[11].

To estimate the displacement, it is possible to use the
phase of the complex cross-correlation between signals
from a reference image and from an image obtained af-
ter compression of the medium (also called the displaced
image). Indeed, this phase has the feature of being null for
the right displacement, and it can be found easily using,
for example, the Newton method. This feature has been
used with success for axial displacement estimation [12].
More recently, this feature has also been used for lateral
displacement estimation based on conventional ultrasound
RF images [13]. However, as it will be shown in this paper,
the quality of this estimation method can be improved by
taking into account the image formation method, and us-
ing a new, dedicated point spread function (PSF). Indeed,
with conventional RF images, neither the complex corre-
lation phase linearity nor the phase slope is controlled.
The phase slope is directly related to the precision of the
estimated displacement.

This work proposes a method to improve the precision
of the estimation of the lateral component of the displace-
ment. To reach this goal, a specific PSF dedicated to lateral
displacement estimation by means of the phase of the com-
plex correlation function is designed. The starting point is
the expression of the correlation function, which is cho-
sen to have a linear phase. Then, it is shown analytically
that having a constraint of linear phase leads to a specific
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expression of the lateral profile of the PSF. This lateral
profile showing oscillations is characterized by two param-
eters, the width and the wavelength of the oscillations. The
width of the PSF is related to the spatial resolution of the
ultrasound images, and the wavelength of the oscillations
is related to the precision of the displacement estimation.
Those parameters can be controlled by receive beamform-
ing.

The paper will proceed as follows. First, a simple image
model is presented together with the method for beam-
former design. Then the lateral displacement estimation
method and the displacement vector estimation scheme
are introduced. Simulation results showing the improve-
ment when using the new dedicated images for lateral dis-
placement estimation compared to conventional images are
presented. Experimental results showing the feasibility and
improvement in a real situation are given. A discussion of
the results and a conclusion are finally provided.

II. Image Model, PSF, Beamforming

The formation of an ultrasound RF image r(x, y) can
be described by a linear relation involving the impulse re-
sponse of the imaging system, also called the PSF, h(x, y),
and a discrete distribution of scatterers representing the
medium, d(x, y). If only two spatial dimensions are con-
sidered, this can be written as a convolution over the lat-
eral and axial spatial variables x and y, respectively. The
convolution is denoted ⊗x,y. This can be written

r(x, y) = h(x, y) ⊗
x,y

d(x, y). (1)

The scatterer distribution,

d(x, y) =
∑

i

Aiδ(x − xi, y − yi), (2)

is assumed to be spatially uncorrelated. In (2), Ai repre-
sents the ith scatterer strength or echogeneity and {xi, yi}
its position. The PSF h(x, y) is considered separable in the
spatial dimensions [14] as

h(x, y) = hx(x)hy(y), (3)

where hy(y) is related to the excitation pulse and the im-
pulse response of the elements of the probe, and hx(x) is
related to diffraction and interferences between contribu-
tions from all transducer elements [15]. This assumption
will be used for the PSF design.

With this model, it is easy to show that the image of
a translated medium is a translated version of the initial
(reference) image in a region (x, y) ∈ Ω, where the shape
of the PSF and the displacement vector are assumed con-
stant. For such a constant displacement, (∆x, ∆y), the
new image s(x, y), which can also be called the displaced
image, is simply related to the reference image r(x, y) by

s(x, y) = r(x − ∆x, y − ∆y). (4)

III. Displacement Estimation Method

A. Design of a PSF Dedicated to Lateral Displacement
Estimation

In this work, a specific PSF is used to increase the qual-
ity of the displacement estimation. A specific shape of the
PSF, and in particular its lateral profile, can be obtained
by beamforming techniques, in different ways. In a pre-
vious paper [16], we have described a beamformer design
method based on a Fraunhoffer approximation, which will
be used here. A plane wave is emitted and the received raw
signals are processed dynamically using quadratic focusing
and a dynamic apodization function equal to the inverse
Fourier transform of the expected lateral PSF profile. This
approach has previously been used by others [17].

In this subsection, the estimation method is described
and it is shown how the choice of this estimation method
leads to the use of a particular PSF and, as a consequence,
a particular apodization function.

Here, the phase of the complex correlation function be-
tween displaced versions of a given signal is studied. This
phase has the feature of being null at the value of the
displacement. The imaginary part of the complex signals
used to calculate the correlation function is calculated as
the Hilbert transform of the real signals. When the estima-
tion is done in the axial direction, the Hilbert transform
is calculated in the axial direction; when the lateral direc-
tion is considered, the Hilbert transform is calculated in
the lateral direction.

First, the lateral direction of the image is considered.
The signals considered are composed of samples coming
from the same depth in the RF image. Those signals are
limited in size and the following derivations have to be con-
sidered locally. One signal is extracted from the reference
image and one from the displaced image. They are con-
sidered to be displaced versions of each other. To find the
right displacement between the two signals, the location of
the zero crossing of the phase of the complex correlation
between the two lateral RF signals is estimated.

The shape of the lateral profile of the PSF is calculated
analytically starting from the expression of the complex
correlation between reference and displaced signals. To fa-
cilitate the estimation and to improve its quality, the phase
of the complex correlation function is chosen to be linear.
As there is no particular expectation about the magni-
tude of the complex correlation function, it is chosen as
Gaussian because it is easily obtained, easily manipulated
analytically, and fairly close to a realistic situation. The
complete expression of the complex correlation function,
as a function of spatial shift X , is given by

R̃rs(X) =
σu√

2
e

−π
(

σu√
2
(X−∆x)

)2

e−j2π 1
λx

(X−∆x),
(5)

where ∆x is the lateral displacement that has to be esti-
mated, 1/λx is the slope of the phase, and

√
2/σu is the

full width at half maximum (FWHM) of the Gaussian en-
velope. The expression of the Gaussian is chosen so that
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the following mathematical manipulations lead to simpli-
fications of the expression. The autocorrelation function is
given for ∆x = 0 as

R̃rr(X) =
σu√

2
e

−π
(

σu√
2
X

)2

e−j2π 1
λx

X . (6)

It is possible to calculate the power spectral density of
the complex lateral signal as the Fourier transform of the
autocorrelation function

Pr̃(u) = F
{

R̃rr(X)
}

= e−2π( u
σu

)2

⊗
u

δ

(
u − 1

λx

)
,
(7)

where F{ } denotes the Fourier transform and u is the
spatial frequency in m−1. The magnitude of the Fourier
transform of the complex signal, denoted Ar̃(u), is equal
to the square root of the power spectral density

Ar̃(u) = e−π( u
σu

)2

⊗
u

δ

(
u − 1

λx

)
. (8)

And finally the magnitude spectrum of the corresponding
real signal is

Ar(u) =
1
2
e−π( u

σu
)2

⊗
u

(
δ

(
u − 1

λx

)
+ δ

(
u +

1
λx

))
.
(9)

Because the scatterer distribution is spatially uncorre-
lated, its autocorrelation is a delta function and its spec-
trum is a uniform distribution. As the spectrum of the
lateral signal is the product of the spectrum of the PSF
and the spectrum of the scatterer distribution, there is
no trace of the latter in the expression of the magnitude
spectrum of the lateral signal. The magnitude spectrum
of the lateral signal given in (9) is equal to the magnitude
spectrum of the lateral profile of the PSF Ah(u) as

Ar(u) = Ah(u). (10)

As a consequence, the magnitude of the spectrum of
the PSF Ah(u) is equal to (9). The profile of the PSF is
calculated by inverse Fourier transform of its spectrum.
Because there is no expectation about the phase of this
spectrum, a uniform phase has been chosen. The lateral
profile of the PSF is equal to

h(x) = e−π( x
σx

)2

cos
(

2π
x

λx

)
, (11)

where x is the spatial variable associated with the lat-
eral direction. Eq. (11) shows that the PSF has lateral
oscillations, which can be compared to the PSF used in
[17], which presents a method for blood flow estimation.
In [17], the PSF was a sinusoid limited by a square win-
dow whereas here the window is Gaussian. As a conse-
quence, the associated apodization functions are also dif-
ferent, specifically, Gaussians in our approach and sinc
functions in [17]. Anderson has also studied this kind of
PSF. Particularly in [18], different apodization functions,

all leading to lateral oscillations, have been tested for 2-D
velocity estimation.

The lateral signals extracted from RF images obtained
with this PSF can be called lateral RF signals. The most
convenient way to control the lateral profile of the PSF,
as presented in [16] and [17], is to emit a plane wave, and
then the lateral profile of the PSF can be controlled by
receive beamforming only. The plane wave is produced by
exciting all active elements at the same time. If dynamic
quadratic focusing is used, the receive apodization func-
tion that leads to a given lateral PSF profile is its inverse
Fourier transform. In this case, the apodization function is
equal to the convolution of a Gaussian function of FWHM
σ0 with a distribution of two delta functions of position
±x0 as

w(xi) =
1
2
e

−π
(

xi
σ0

)2

⊗
xi

(δ(xi − x0) + δ(xi + x0)) .
(12)

Here, w(xi) is the weighting coefficient applied to the
ith element which has lateral position xi. According to
the Fraunhoffer approximation, the relation between the
apodization function parameters and those from the PSF
are given by

x0 =
yλ

λx
, (13)

σ0 =
yλ

√
2

σx
, (14)

where λ is the wavelength of the emitted wave, y is the
depth of interest, λx is the wavelength of the lateral os-
cillations, σx is the FWHM of the Gaussian envelope of
the PSF, σ0 is the FWHM of the Gaussian peaks of the
apodization function, and x0 their position. The PSF and
apodization are illustrated in Fig. 1.

As can be seen in (13) and (14) both parameters of the
apodization function are given as a function of the depth
y. The apodization function must thus be adapted dynam-
ically with respect to the depth while processing the raw
received signals. The receive focusing is also adapted dy-
namically: dynamic quadratic focusing is used. This makes
it possible to limit the size of the lateral PSF and to
reach the Fraunhoffer approximation. Dynamic focusing
and apodization are used in this work.

B. Aperture Function Parameters

The expression of the lateral profile of the PSF and the
expression of the apodization function that leads to this
particular PSF profile have been given in (11) and (12),
respectively. The actual values of the key parameters, λx

and σx, are limited by the physical size of the active part
of the ultrasound probe.

Intuitively, a high oscillation frequency in the lateral
direction would lead to a better displacement estimate be-
cause it increases the phase slope. If it is steeper, its zero
crossing is identified more precisely. Moreover, a thin PSF
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Fig. 1. (a) PSF profile and (b) apodization function. O is the origin
of the coordinate system.

would lead to a better spatial resolution. Unfortunately,
both improvements require an increase in the length of
the active part of the probe and, with a constant pitch, a
higher number of elements. A trade-off must be made be-
tween lateral resolution and phase slope which is related
to estimator performance. This can be expressed quanti-
tatively as a function of the parameters of the apodization
function or as a function of the PSF parameters. In the
present work, the apodization function is considered well
defined if 99% of the area under its curve is inside the ac-
tive part of the probe. In order to reach this requirement,
the apodization function parameters must respect

1.2σ0 + x0 ≤ W

2
, (15)

which can be expressed as a function of the PSF parame-
ters as

1.2
yλ

√
2

σx
+

yλ

λx
≤ W

2
, (16)

where W is the length of the active part of the probe, and
λ, λx, σx, σ0, and x0 are the same parameters as in (13)
and (14).

To choose the optimal value of σx and λx with a given
probe, a simple simulation was made. Three thousand dif-
ferent pairs of reference and strain signals were randomly
generated. The probe simulated was a commercial linear
array probe; its parameters are given in Table I. The probe
was assumed to use 64 active elements, and, with a pitch
of 0.208 mm, the active part of the probe is 13.3 mm long.
The parameter set (σx, λx) was chosen so as to minimize
the mean square error (MSE) between the true and the es-
timated displacements, over all realizations. For the simu-
lation, the strain scatterer distribution was assumed to be

TABLE I
Parameters of the Commercial Probe Used.

Parameter Value

Center frequency 7 MHz
Total number of elements 128
Number of active elements 64
Element height 4.5 mm
Element width 0.173 mm
Distance between two elements 0.035 mm

a stretched version of the reference scatterer distribution
as follows

d′(x) = d
((

1 +
ε

100

)
x
)

, (17)

with ε, the strain, given as a percentage. As a consequence,
the displacement of the scatterers is not the same for the
whole length of the window. This is what happens in a real
situation. The true displacement is considered to be the
displacement of a scatterer situated in the middle of the
window. The MSE is the average over the 3000 realizations
of the squared difference between the true displacement
∆xi and the estimated displacement ∆̂xi. It is expressed by

MSE =
1
N

N∑
i=1

(
∆xi − ∆̂xi

)2
, (18)

where N is the total number of realizations.
Different values of λx and σx have been investigated

and the result is reported in Fig. 2. More values than those
that can be reached with our probe according to (16) have
been tested. The tendency is a reduced mean quadratic
error with a decrease of the lateral wavelength λx and a
decrease of the width of the PSF σx, as would be expected
intuitively. Finally, the parameters are chosen as follows:
λx = 2.6 mm and σx = 2.8 mm. It is interesting to notice
that the result could be improved somewhat more if the
probe were larger.

C. System Architecture

To estimate the axial and lateral components of the
displacement field, a 2-D displacement estimation method
based on a twice-1-D scheme is used as follows, and as
given in Fig. 3. The estimation is done locally using win-
dows from the axial or lateral RF signals. For each lo-
cal estimation, the displacement is identified with the zero
crossing of the phase of the complex correlation which is
estimated using the Newton method as described in [12].
An adapted windowing technique is used that takes into
account the estimation previously done for neighboring
points.

For each direction of estimation, a different set of
images is used. The images obtained with the beam-
former presented previously [dynamic quadratic focusing
and apodization function given in (12)] show oscillations
in both directions of space. This is not well suited to the
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Fig. 2. Mean squared error as a function of λx and σx. The pa-
rameters that can not be reached with our probe are represented
in semi-transparency on the 3-D plot (a) and on the projection (b),
and by a thin line on the 2-D plots, (c) and (d). The dot indicates
the optimum, which is for λx = 2.6 mm and σx = 2.8 mm. The
plots correspond to the two black lines on the 3-D plot, and on the
projection.

Fig. 3. Sketch for using specific images for each direction of estima-
tion.

Fig. 4. Young’s modulus distribution.

twice-1-D scheme. Indeed, in a twice-1-D scheme, the dis-
placement that occurs in the direction perpendicular to
the direction of estimation hinders the possibility of cor-
rectly estimating the displacement. Thus, the variation of
the acoustic signature perpendicular to the estimation di-
rection has to have a slow variation. This is the reason
why two sets of images are used, as in [16], where a het-
erodyning demodulation scheme has been used. This de-
modulation method introduced in [19] a refinement of the
estimation method presented by Jensen and Munk in [20].
It provides images with only lateral oscillations. This de-
modulation technique is based on the combination of even
and odd images obtained in our work by Hilbert transform
in the axial or in the lateral direction. This method is also
interesting because it enables us to multiply by a factor
of two the lateral oscillations frequency. Those images are
used for the lateral estimation. For the images for axial es-
timation, a conventional beamformer is well adapted. This
approach is illustrated graphically in Fig. 3.

IV. Simulation Result

A. Parameters of the Medium

The displacement vector estimation method has been
applied to simulated data to show quantitatively the im-
provement due to the specific lateral PSF profile given in
(11). The medium simulated is two-dimensional inside the
image plane. The medium is considered to be 10 mm deep
and located at a depth between 20 and 30 mm. The Pois-
son’s ratio of the medium is assumed equal to 0.49 and the
Young’s modulus distribution is given in (19) and shown
in Fig. 4.

The background value of Young’s modulus is equal to
50 kPa. Located in the middle is an inclusion having a
Gaussian distribution reaching a maximum of 500 kPa.
This leads to the following expression of Young’s modulus:

E = 50 + 450e−π(x
4 )2

e
−π

(
(y−25)

4

)2

. (19)

The maximum elasticity contrast is a factor of 10. The
medium is compressed in the axial dimension. An axial dis-
placement of 0.3 mm is applied to the edge of the phantom
situated at 30-mm depth. Following convention, the point
that is taken as reference (zero displacement) is located at
the middle of the phantom.

The displacement map inside the phantom was calcu-
lated using FEMLAB (Ver 3.1., COMSOL AB, Stockholm,
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Fig. 5. (c) True displacement; (a) displacement estimated from conventional images by speckle tracking, (b) from dedicated images with
speckle tracking, (d) from conventional images with the twice-1-D method, and (e) from dedicated images with twice-1-D method. The
arrows scale is indicated for the circled arrow which is 100 µm.

Sweden). The reference and strain ultrasound images were
calculated using (1), the convolution between the distribu-
tion of scatterers and the analytical expression of the PSF.
For the conventional images, the expression of the PSF is

h(x, y) = e−π( x
σx

)2

e
−π

(
y

σy

)2

cos
(

2π
y

λy

)
,

(20)

with λy = 0.2 mm, σy = 0.8 mm, and σx = 1.4 mm. For
the images with lateral oscillations, the PSF is

h(x, y) = e−π( x
σx

)2

e
−π

(
y

σy

)2

cos
(

2π
x

λx

)
cos

(
2π

y

λy

)
,
(21)

with λy = 0.2 mm, σy = 0.8 mm, λx = 2.6 mm,
and σx = 2.8 mm. The density of scatterers was 34.5
scatterers/mm2, which corresponds to 1.38 scatterers/λ2

y.
The displacement vector estimation method of Fig. 3 was
used to estimate the axial and lateral displacement maps.

In order to show the improvement in lateral displace-
ment estimation due to the use of our specific images with
lateral oscillations, we have also used our method with only
conventional images for both directions of estimation. For
both cases, the same estimation method has been used
(case 1: conventional images for both directions of estima-
tion; case 2: conventional images for axial estimation and
lateral oscillating images for lateral estimation). Finally,
in order to give a comparison of the result of our method

compared to a well-known method, we have also tested
a classical speckle tracking algorithm based on the maxi-
mization of the normalized 2-D cross-correlation function.
The results are given in the following section.

B. Results

The true and estimated 2-D displacement vectors are
shown in Fig. 5, while the lateral displacement maps are
provided in Fig. 6. The histograms of the error for the
lateral displacement are given in Fig. 7. With conventional
images and speckle tracking, the standard deviation of the
error distribution is 150.3 µm; with dedicated images and
speckle tracking, it is 71.2 µm; with conventional images
and twice-1-D method, it is 37.1 µm; and with dedicated
images and twice-1-D method, it is 11.4 µm.

V. Experimental Result

A. Experimental Setup and Approach

Our laboratory is well experienced in the construction
of phantoms dedicated to elastography by use of a mate-
rial called polyvinyl alcohol (PVA) Cryogel [21]. The stiff-
ness of this material can be controlled by subjecting it to
different numbers of freeze/thaw cycles. For our study, a
parallelepiped-shaped phantom with a hard cylindrical in-
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Fig. 6. (c) True lateral displacement map; (a) estimated map with conventional images by speckle tracking, (b) with dedicated images and
speckle tracking, (d) with conventional images and twice-1-D method, and (e) with dedicated images and twice-1-D method.

Fig. 7. Histograms of the error between true and estimated lateral
displacement (a) estimated with conventional images and speckle
tracking, (b) with dedicated images and speckle tracking, (c) with
conventional images and twice-1-D method, and (d) with dedicated
images and twice-1-D method.

clusion in its middle was constructed. The geometry and
elastic properties of the phantom are given in Fig. 8.

Acquisition of the ultrasound data was made with the
remote accessible multichannel ultrasound system (RAS-
MUS) at the Center for Fast Ultrasound Imaging (CFU,
Ørsted DTU, Denmark). This ultrasound scanner is dedi-
cated to research in beamforming and synthetic aperture
and is presented in detail in a recent paper by Jensen et
al. [22]. The scanner allows nearly complete digital control
of the emission as well as storage of all raw data from all
transducer elements for subsequent (off-line) beamform-
ing.

The experimental setup is shown in Fig. 9. It consists of
the RASMUS scanner and a 3-D translation system, both

Fig. 8. Geometric configuration of the Cryogel phantom.

Fig. 9. Experimental setup.

fully operated from the user PC via MATLAB (The Math-
Works, Inc., Natick, MA). The phantom and the tip of the
transducer are immersed in a water tank. The user can ap-
ply any kind of displacement to the probe by means of the
3-D translation system. Two experiments were carried out.

First, the possibility of estimating a pure lateral dis-
placement was tested. The aim was to evaluate the lateral
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Fig. 10. Displacement estimated in the case of a pure lateral trans-
lation with (a) conventional and (b) dedicated images.

displacement estimation without having axial displace-
ment that could decrease the quality of the estimation.
Here, the ultrasound probe was translated in a direction
parallel to the surface of the phantom. No compression was
applied. The phantom was standing still on the bottom of
the water tank.

In the second experiment, the phantom was compressed
with the probe to have axial and lateral displacement. No
compression plate was used. The phantom was unfixed on
the lateral boundaries. Those acquisitions were used to test
the whole displacement vector estimation method.

For those experiments, the raw data received from each
element were acquired and the sketch of Fig. 3 was used.
A plane wave was produced in emit; conventional beam-
forming in receive was used for producing the conventional
images, and specific beamforming in receive for the dedi-
cated images with lateral oscillations.

In order to have an idea of the displacement map that
should be obtained, a finite element simulation was done
with the geometry of Fig. 8. The result of this simula-
tion should be interpreted with caution because the ex-
act Young’s modulus of the medium (phantom and inclu-
sion) as well as the Poisson’s ratio are not known exactly.
However, this simulation gives a good idea of the progress
reached thanks to our method.

B. Experiment One: Lateral Displacement Only

The first step was the acquisition of a reference image.
Then the probe was translated laterally in steps of 25 µm.
The estimation of the lateral displacement was then car-
ried out between each of those subsequent images and the
reference image. Both the reference image and the sub-
sequent images were divided into lateral 1-D windows of
length 6 mm, with a 90% overlapping between the win-
dows, and the estimation was done for all windows. The
result reported in Fig. 10 shows the mean estimate and
standard deviation between each pair of images. This was
carried out for conventional (a) and dedicated (b) images.
The standard deviation is always 7 times smaller with ded-
icated images than with conventional images. For a dis-

placement to be estimated at 50 µm, 200 µm and 350 µm,
the standard deviations are 230 µm, 252 µm, and 298 µm,
respectively, for conventional images, and 12 µm, 23 µm,
and 37 µm, respectively, for the dedicated images. The ra-
tio between the standard deviation and the displacement
to be estimated gets smaller for large displacements, which
indicates a smaller relative error for large displacements.

C. Experiment Two: Axial and Lateral Displacement

One image was acquired before compression and one af-
ter applying an axial displacement of 150 µm. Before ap-
plying this small displacement, a pre-compression of 10%
of the height of the phantom was applied to ensure a good
contact between the probe and the phantom.

The displacement vectors estimated for conventional
and for dedicated images are represented in Fig. 11. In
this section, the axial and lateral displacement maps are
estimated the same way as for the simulated images, using
the block diagram given in Fig. 3. The lateral displacement
maps are also presented in Fig. 12.

VI. Discussion

A Newton method has been used for estimating the zero
crossing of the phase of the complex correlation between
1-D windows extracted from the lateral direction of the
RF ultrasound images. The use of this particular estima-
tor has led us to design a receive beamformer resulting
in dedicated images with lateral oscillations. To obtain an
estimate of the displacement vector, the same estimation
is used for each direction in a twice-1-D scheme. Two sets
of images are used, one for each direction of estimation.

The improvement of the precision due to the use of ded-
icated images for lateral displacement estimation is well
illustrated in simulation. First, the arrow representation
of Fig. 5 gives a qualitative impression of this improve-
ment. When conventional images are used, the estimation
vectors appear different from those of the true displace-
ment arrows, whereas with dedicated images, the errors
can hardly be seen. This can also be seen in Fig. 6 where
only the lateral component of the displacement is repre-
sented. Here the map estimated from dedicated images is
more regular and closer to the true one. This shows that
with dedicated images having lateral oscillations, there are
fewer errors than with conventional images, even if some
errors can still be found with the dedicated images. This
can also be seen in Fig. 7 which shows the histograms of
the lateral displacement error. With conventional images,
the standard deviation of the error distribution is 37.1 µm
and for lateral oscillations it is 11.4 µm. This represents
an improvement of more than a factor of 3.

We have also tested a conventional speckle tracking al-
gorithm with both kinds of images, the conventional ones
and the ones with lateral oscillations. This method does
not give as good results as the method based on the phase
zero crossing, as can be seen in Figs. 5 and 6, where dif-
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Fig. 11. Displacement vector superimposed on the associated B-mode image of the phantom, (a) from finite element simulation, and estimated
(b) with conventional and (c) with dedicated images. Dotted regions highlight differences. The displacement arrows scale is given by the
axial and lateral arrows of 50 µm in the left bottom corner of (a), (b), and (c).

Fig. 12. (a) Lateral displacement map obtained by finite element simulation, and estimated (b) with conventional and (c) with dedicated
images obtained with experimental data.

ferences appear more clearly for the speckle tracking tech-
nique than for our technique. An interesting result con-
cerns the fact that lateral oscillations also improve the
lateral estimation result in the case of speckle tracking.
This is probably due to the fact that higher frequencies
are present in the lateral direction of the images, lead-
ing naturally to an easier bloc matching. The histograms
of Fig. 7 show that, for lateral oscillations, our method
based on the phase leads to a standard deviation of the

error which is around 7 times smaller than with speckle
tracking.

The experimental feasibility of the method has been in-
vestigated in two steps. First, the lateral displacement is
estimated when only a lateral translation is present be-
tween the acquisitions. Again, a comparison between the
estimation obtained with conventional images and the one
obtained with dedicated images is given in Fig. 10. The im-
provement due to the lateral oscillations leads to a smaller
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error between the estimate and the true value. The esti-
mated curve fits better than the true one. Moreover, the
standard deviation is always 7 times smaller with dedi-
cated images than with conventional images.

The method was finally tested with a real phantom built
with PVA Cryogel. The medium contains a hard inclusion
in its middle. The lateral displacement map obtained with
conventional images and the one obtained with dedicated
images are given in Figs. 11 and 12. A finite element sim-
ulation was done in order to reproduce the experimental
conditions. As the exact elastic properties of the Cryo-
gel phantom are not known, the true displacement map is
not known. However, it gives a good idea of the coherence
of the results. Particularly, some ill-estimated points are
present in the result obtained with conventional images,
inside the dotted regions. Specifically, if the compression
is applied in the middle of the phantom, the lateral dis-
placement should be in the direction of the edges, and not
toward the middle of the phantom, which is the case here
in Fig. 11(b). This leads us to the conclusion that there
is a real improvement due to the use of dedicated images
which give a smoother displacement map.

It is important to keep in mind that there is a limit to
how much the beamforming parameters can be optimized.
This limit is fixed by the size of the ultrasound probe. The
two key parameters of the PSF are the lateral oscillations
wavelength, which is related to the complex correlation
phase slope and the estimation’s precision, and the width
of its Gaussian envelopes, which is related to the spatial
resolution of the images. The optimal values according to
our probe are deduced from Fig. 2. This figure shows that
the results could be increased even more, if smaller param-
eters could be used.

The estimation could probably be as good for both di-
rections of space if the same oscillations frequency could
be reached in the lateral and in the axial direction. First, it
is important to notice that this can be reached only after
heterodyning demodulation, which decreases by a factor
of two the lateral wavelength. The problem is that with
the beamforming method chosen, it is possible to change
only the receive beamforming. With the same element’s
size, this would lead to a probe of 600 elements. An im-
provement can probably be reached by using a synthetic
aperture and changing the emit PSF profile.

VII. Conclusions

In this paper we have presented the design of a PSF ded-
icated to lateral displacement estimation for ultrasound
tissue elasticity imaging.

As the estimation method chosen uses the phase of the
complex correlation between signals from the lateral di-
rection of the ultrasound RF images, the phase of this
complex correlation function is forced to be linear. The
consequences for the shape of the lateral signals and for
the PSF have been derived analytically. The lateral profile
of the PSF shows oscillations as in the axial direction of a
conventional PSF.

A comparison with conventional PSF has been eval-
uated quantitatively in simulations and experimentally.
Thanks to the dedicated PSF, an increase in the accuracy
of the estimation has been highlighted with an important
diminution of the standard deviation of the error (between
a factor of 3 and a factor of 7, depending on the situation).

The precision of the method can probably still be in-
creased. However, it would necessitate a larger ultrasound
probe or another beamforming approach, e.g., a synthetic
aperture.
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[5] J. Ophir, I. Césepedes, H. Ponnekanti, Y. Yazdi, and X. Li,
“Elastography: A quantitative method for imaging the elastic-
ity of biological tissues,” Ultrason. Imag., vol. 13, pp. 111–134,
1991.

[6] T. A. Krouskop, T. M. Wheeler, F. Kallel, B. S. Garra, and
T. Hall, “Elastic moduli of breast and prostate tissues under
compression,” Ultrason. Imag., vol. 20, pp. 260–274, 1998.

[7] A. Lyshchik, T. Higashi, R. Asato, S. Tanaka, J. Ito, M. Hi-
raoka, A. B. Brill, T. Saga, and D. K. Togashi, “Elastic moduli
of thyroid tissues under compression,” Ultrason. Imag., vol. 27,
pp. 101–111, 2005.

[8] P. E. Barbone and J. C. Bamber, “Quantitative elasticity imag-
ing: What can and cannot be inferred from strain images,” Phys.
Med. Biol., vol. 47, pp. 2147–2164, 2002.

[9] E. Konofagou and J. Ophir, “A new elastographic method for
estimation and imaging of lateral displacements, lateral strains,
corrected axial strains and Poisson’s ratios in tissues,” Ultra-
sound Med. Biol., vol. 24, pp. 1183–1199, 1998.

[10] N. Nitta and T. Shina, “A method of tissue estimation based
on three-dimensional displacement vector,” Jpn. J. Appl. Phys.,
vol. 39, pp. 3225–3229, 2000.

[11] M. Tanter, J. Bercoff, L. Sandrin, and M. Fink, “Ultrafast com-
pound imaging for 2-D motion vector estimation: Application
to transient elastography,” IEEE Trans. Ultrason., Ferroelect.,
Freq. Contr., vol. 49, pp. 1363–1374, 2002.

[12] A. Pesavento, C. Perrey, M. Krueger, and H. Ermert, “A
time-efficient and accurate strain estimation concept for ultra-
sonic elastography using iterative phase zero estimation,” IEEE
Trans. Ultrason., Ferroelect., Freq. Contr., vol. 46, pp. 1057–
1067, 1999.

[13] X. Chen, M. J. Zohdy, S. Y. Emelianov, and M. O’Donnell,
“Lateral speckle tracking using synthetic lateral phase,” IEEE
Trans. Ultrason., Ferroelect., Freq. Contr., vol. 51, pp. 540–550,
2004.

[14] J. C. Bamber and R. J. Dickinson, “Ultrasonic B-scanning: A
computer simulation,” Phys. Med. Biol., vol. 25, pp. 463–479,
1980.



756 ieee transactions on ultrasonics, ferroelectrics, and frequency control, vol. 54, no. 4, april 2007

[15] R. F. Wagner, S. W. Smith, J. M. Sandrik, and H. Lopez, “Statis-
tics of speckle in ultrasound B-scans,” IEEE Trans. Sonics Ul-
trason., vol. 30, pp. 156–163, 1983.

[16] H. Liebgott, J. Fromageau, J. Wilhjelm, D. Vray, and P.
Delachartre, “Beamforming scheme for 2D displacement estima-
tion in ultrasound imaging,” EURASIP J. Appl. Signal Process.,
vol. 2005, pp. 1212–1220, 2005.

[17] J. A. Jensen and P. Munk, “A new method for estimation
of velocity vectors,” IEEE Trans. Ultrason., Ferroelect., Freq.
Contr., vol. 45, pp. 837–851, 1998.

[18] M. Anderson, “Multi-dimensional velocity estimation with ultra-
sound using spatial quadrature,” IEEE Trans. Ultrason., Ferro-
elect., Freq. Contr., vol. 45, pp. 852–861, 1998.

[19] M. E. Anderson, “A heterodyning demodulation technique for
spatial quadrature,” in Proc. IEEE Ultrason. Symp., vol. 2,
2000, pp. 1487–1490.

[20] J. A. Jensen and P. Munk, “Improved estimation and focusing
scheme for vector velocity estimation,” in Proc. IEEE Ultrason.
Symp., vol. 2, 1999, pp. 1465–1470.

[21] J. Fromageau, E. Brusseau, D. Vray, G. Gimenez, and P.
Delachartre, “Characterization of PVA cryogel for intravascular
ultrasound elasticity imaging,” IEEE Trans. Ultrason., Ferro-
elect., Freq. Contr., vol. 50, pp. 1318–1324, 2003.

[22] J. A. Jensen, O. Holm, L. J. Jensen, H. Bendsen, S. Nikolov,
B. G. Tomov, P. Munk, M. Hansen, K. Salomonsen, J. Hansen,
K. Gormsen, H. M. Pedersen, and K. L. Gammelmark, “Ul-
trasound research scanner for real-time synthetic aperture data
acquisition,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr.,
vol. 52, pp. 881–891, 2005.
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